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ABSTRACT

This report involves the investigation of the mechanical vibration damping
characteristics of glass/epuxy and graphite/epoxy composite materials. The
objective was io develop an analytical model which incorporates the frequency
dependence of the vibration damping loss factor and to experimentally
characterize the loss factor for frequencies up to 1000 Hz.

Numerous analytical models have been proposed to determine the loss
factor of composites, including micromechanical, macromechanical and
structural models. Of these generic types, the macromechanical models
incorporate important material characteristics which can affect the loss factor.
The most widely accepted model utilizes the elastic viscoelastic correspondence
principle. Although investigators acknowledge the viscoelastic characteristic of
composites, they fail to incorporate the frequency dependence in their analysis.
In this effort, the elastic viscoelastic correspondence principle is extended to
incorporate the frequency dependence of the composite material.

The analytical model requires as input the inplane material loss factors as a
function of frequency. An experimental apparatus was designed and fabricated
to accomplish this. Cantilever beam specimens were utilized, which were
excited using an impulse from an instrumented force hammer. The loss factor
was calculated using the half power band width technique. The apparatus was
calibrated using a well characterized low damping material. The effect of
clamping pressure and of the clamp block to specimen interface material was
also investigated.

While testing the composites, it became evident that the amplitude of
vibraiion had a pronounced effect on the calculated loss factor. Calculated loss
factor were significantly reduced if the tip displacement amplitudes vs. ime
were lower than 0.001 in. for more than 25% of the data set. To alleviate this
probiem, a robust testing methodology was proposed and tesied. This test
method is then utilized to determine the composite inplane loss factors.

The analytical model was validated using two generic laminated
configurations. The model predictions were within the scatter of the
experimental data. Parametric studies were also performed using the model.
Trends shown by other investigators as well as inconsistencies between them
were accounted for by this model.




EXECUTIVE SUMMARY

This report presents information on a multiyear research investigation of the
mechanical vibration damping of thermoset matrix composite materials. The objective of
this effort was to develop an analytical model which could determine the mechanical
vibration damping of an arbitrary composite laminate in a specified frequency range. A
detailed discussion on the objective of this program is presented in Chapter 1 following the

Introduction..

Chapter 2 presents a detailed chronological literature survey of the vibration damping
research performed on composite materials. This survey is divided into two main sections;
test procedures and experimental results, and analytical models for determination of the
damping loss factor. The experimental technique that has gained wide acceptance for the
determination of the damping loss factor of composites utilizes a cantilever beamn. The
beam is excited using an instrumented impact hammer and the beam response is measured
with a noncontact eddy curreni probe. The mechanical vibration damping loss factor is

then determined using the half power band width technique.

The damping loss factor for composite materials has been shown experimentally to be

dependent on the fiber angle, specimen thickness, the resin system used, the frequency of

test, the fiber volume fraction, fiber diameter, beam stiffness, state of damage in the




material, and, in scme cases, on the stress amplitude. The type of fiber used also affects
the damping loss factor due to the fiber's contribution to the damping or to the difference in
the interface properties of the fiber and resin sysiems investigated. Increasing the fiber
volume fraction, the fiber diameter, the specimen thickness, anc the beam stiffness reduces
the damping loss factor. In most cases, increasing the amount of damage in the material,

the stress amplitude of test, or the frequency of test increases the damping loss factor.

The theoretical models presented in Chapter 2 can be categorized as micromechanical,
macromechanical or structural. The models discussed are currently inadequate for design
purposes. The micromechanical approaches for determining tne loss factor of composite
laminae do not incorporate the material characteristics that have been shown to affect the
loss factor. In addition, they do not take into account the frequency dependence loss factor
characierisiic of the mawmix. The macromechanicai approaches aiso do not account for the
frequency dependence, i.e the viscoelastic characteristic, of the composite material. In
additon, there does not exis: an adequate characterization of the material loss factor which
could be utilized as inpux to th 3se macromechanical models. The structural approaches do
not account fcr either th- frequency dependence of the loss factor or the anisotropic

vanaton in loss factor.

Chapter 3 presents the analytical model developed in this research. The model is
based on the elastic viscoelastic correspondence principle. In this research, the frequency
dependence of the damping loss factor is included, thereby extending the model as it is

currently used in the literature. The frequency dependent complex moduli of a lamina is

utilized in classical lamination theory to determine the various complex reduced stiffnesses




of the composite laminate. The laminate loss factors at any frequency can then be
determined as the ratio of the complex to real part of the specific component of the effective
moduli. The importance of this model is that from limited lamina complex moduti, the
damping loss factor at a specific frequency can be determined, in the analogous manner to

the methodology used for determining the effective material properties of a composite.

Chapter 4 presents the experimental set-up, the computer hardware utilized and the
software written to determine the damping loss factor of the composites. In order to ensure
that the loss factor results obtained were of the material and not from any other soutces of
energy dissipation, such as friction at the clamped area of the specimen, aerodynamic
damping, or inadequacies in the acquisition system, the set-up and procedure were

calibrated using a well characterized, low damping material system, 2024 T-4 aluminum.

Chapter 5, a robust testing methodology is proposed for the determination of the
material damping loss factor of composite materials. This is shown to be necessary for
composites because of their high damping loss factor. During the experimental testing of
the composite specimens, it was shown that it is necessary to determine the applicability of
the displacement information prior to performing data reductions for loss factor
determination. Incorporation of near zero displacement information, or displacements that
are on the same order of magnitude as the noise of the system, has the effect of lowering
the caiculated value of the loss factor. This occurs because of the effective averaging of
this loss factor with the locses that occur at th» larger more resolvable displacements.

Another reason for errors occurring when the near zero displacements are included in the

determination of the damping loss factor is due to the reduction of the sensitivity of the




sensors measuring the beam tip displacements as the tip displacements are reduced.

The proposed robust testing methodology initially requires a well designed apparatus
that has been calibrated using a well characterized test specimen, as has been described in
Chapter 4. Following the beam excitation, the magnitude of the beam tip displacement vs.
time must be visually or numerically interrogated to insure that the displacements remain
greater than the noise and resolution of the sensor and data acquisition system. If not, the
resultant experimentally determined loss factor may be lower than the actual material loss
factor. If measured displacements less than 0.001 in. (0.025 mm) are incorporated in the
FFT analysis, and constitute more than 25% of the displacement vs. time curve, the loss

factor that is calculated will be lower than the actual material loss factor.

The damping loss factor results are shown to be dependent on the amplitude of beam
tp displacements. It is proposed that the material loss factor can be obtained by
determiniing the loss factor versus tip displacement by partitioning the beam vibration
response into subsets. The loss factor within each of these subsets are then determined and
plotted versus the maximutm beam amplitude within the subset. The material loss factor is
then obtained by performing a linear fit on this data and extrapolating to zero displacement.
This zero displacement loss factor is then assumed to be the material loss factor. The
extrapolation to zero displacement should reduce the extraneous losses, providing a more
robust testing protocol. In addition, it is hypothesized that the loss factors that result are
more represeniative of that which would be experienced by an actual structuiy since, in the

majority of cases, displacements are small and/or the structures are restrained from

e .periencing large displacements.




In Chapter 6, the results of the experimental testing of the material loss factors for
AS4/3501-6 and S-2 Glass/3501-6 composites are presented. The loss factor for the 90
degree S-2 glass/3501-6 and AS4/3501-6 unidirectional composites is a nonlinear function
of frequency, showing an increase in loss factor with increasing frequency. The loss factor
for the 0 degree S-2 glass/3501-6 and AS4/3501-6 unidirectional composite appears to be
linear, showing an increase with increasing frequency. From experimentally determined 0°
and 90° loss factor information, a methodology is given to determine the shear loss 1actor
based on the loss factor results obtained in a + 45° beam specimen. The results of
experimental investigations in the literature which attempt to determine the effect of fiber
orientation on loss factor are analytically investigated using the mode! described in Chapter
3 and the experimental data obtained in this chapter. The incorporatior of the frequeacy
dependence of the loss factor is shown to analytically explain the discrepancies in the
literature on the ioss factor as a function of fiber orientation. The results of the model show
that for different frequencies, the fiber orientation at which the maximum damping loss
factor occurs can be different. In additon, the differences that occur when considering
angle-ply versus off-axis results is shown, using the analytical model, to be the result of

the swress coupling ef.ects on loss factor.

In Chapter 7, results are presented on the experimenial validation of the analytical

model. The validation is performed on quasi-isotropic $-2 Glass/3501-6 beams. 1Two
configurations were used: (90/0/-45/45), aind (45/-45/90/0)¢. The analytical model based

on the elastic viscoelastic correspondence principle appears to provide an excellent
prediction of the damping loss factor of a general laminated composn. configuration over a
given frequerncy range. Trends occurring experimentally in the material are shown to occur

using the analytical model. The analytical modei has been shown to provide a loss factor




which is within 15% of the experimentally dctermined values in the frequency raﬁge of 50

to 500 Hz.

Chapter 8 discusses the conclusions from this research investigation. The analytical
model, an extension of the elastic-viscoelastic correspondence principle incorporating the
frequency dependence of the loss factor, is an accurate analytical tool that can be used to
determine the loss factor of a general laminated composite plate. In addition, the proposed

robust testing methodology is summarized.

Chapter 9 presents five areas of investigation which would add to the kiowiedge base
and testing capability of the vibration damping of composites. The areas identified are:
cmveaaed fibe ic di - ; efecis; effects of beain oriciiation oi
damping loss factor; damping optimization using hybrid composite design; gencralized 3-D

elastic viscoelastic model.




ADMINISTRATIVE INFORMATION

This project was financially supported by several Agencies. The DTRC Independent
Exploratory Development Program, sponsored by the Space and Naval Warfare Systems
Command Director of Navy Laboratories, SPAWAR 05 and administered by the Research
Coordinator, DTRC 0113 under Work Unit 1-2802-454 supported the development and
calibration of the test apparatus and some of the .nitial results of the composite testing. The
development of the robust testing methodology was supported by Dr. A.K. Vasudevan,
ONR Code 1216. under Work Unit 1-2802-150. The analytical model development and
iiie composiie iest resulis were supported by Mr. James Kelly, the Program Area for

Materials of the DARPA AST Program, under Work Unit 1-2802-300 and 1-2802-301.

INTRODUCTION

The vibration damping characteristics of various structural applications play a
dominant role in the choice cf configuration and materials. Metals, in general, possess a
very low vibration damping loss factor. For the majority of structures that are
manufactured using metal, however, damping is not considered to be a problem. For
example, cantilevered structures such as aircraft wings have potential vibration problems.
In these structures, aerodynamic and/or structural loading can set up vibrations within the

structure. Since the materials used in many of these applications (aluminum or titanium)

have very low material damping loss factors, an excitation at resonance could lead to




potential failure from fatigue overloading caused by the growing amplitude of vibration. In

reality, this is not a problem, not because of the material, but because of the structural

configuration typically cinployed. In the above example, the wing is manufactured using

thousands of mechanical fasteners. When the wing is set into vibration, each of these

fasteners becomes a site of energy dissipation by virtue of the friction occurring there. The .
structural configuration therefore possesses adequate energy dissipation to prevent

structural degradation from in-service loading.

Erergy dissipation around fastener sites is also possible in composites as well. In
practice, however, one advantage of composites lics in the ability to reduce the number of
parts 2nd thereby the number of fasteners. Because of this reduction, the damping cf the

composite material becomes mere important in the overall damping of the structure.

Theve has been only a limited number of investigators who have been concerned with
the vibration damping response of composites. Typically, their investigations have dealt
with either the development of expenimental procedures and subsequent determination of
the quantitative values of the damping loss factor, or with the development of analytical

models capable of determining the composite material loss factor.

The majority of composite structures that are under consideration are manufactured
using thermioplastic or thermoset polymer mairices. These matrix systems are viscoelastic.
This means that as the material is loaded, the strain and stress are not in phase; rather the

strain lags the stress(1). A composite material that is manufactured with these viscoelastic

materials will also exhibit this viscoelastic characteristic. In general, the composite's




vibration damping response will be a combined response of the matrix and fibers that are

used.

Typically, the damping loss factor of the polymer murix materials normally used ia
composites is temperature dependent with certain characteristic features. Figure 1isa
generic representation of the loss factor of a polymer as a function of temperature at
constant frequency. In general, there are three peaks present. These peaks are denoted as
the alpha, beta and gamma transitions. It has been proposed that different mechanisms are
responsible for the high energy dissipation associated with each of these transitions. The
low temperature or high frequency transition, also called the alpha transition, has been
associated in the literature with chain segment mobility (2). The largest peak in loss factor,
the beta transition, 1s associated with the glass transition temperature. It has been propost 4
that losses occur here from long range motions of the amorphous polymer chains or
rotations that can occur with the material passing from the glassy to rubbery or liquid state
(1,3). The third peak that has been detected at temperatures above the glass transition, the
gamma peak, is associated with net translatory motions of the amorphous chains and

decrease in elastic modulus of the polymer (4).

For a generic polymer sysiem, the frequency dependence of the loss factor has an
inverse correspondence to the temperature dependence. As discussed above, a polymer
may exhibit either an increase or decrease in loss factor with increasing frequency
depending on the specific characteristics of that polymer. When incorporated into a

composite system with continuous fibers, this frr uency dependence of the loss factor

should also be present.
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Figure 1: Schematic variation of loss factor with temperature for
an amorphous polymer at constant frequency.

For a generic polymer system, the frequency dependence of the loss factor has an
inverse correspondence to the temperature dependence. As discussed above, a polymer
may exhibit either an increase or decrease in loss factor with increasing frequency
depending on the specific characteristics of that polymer. When incorporated into a
composite system with continuous fibers, this frequency dependence of the loss factor

should also be present.

Previously, neither experimental nor analytical studies have taken this frequency

dependence into account. Yet, the composite material loss factor needs to be determined as




a function of frequency 1o obrain an accurate characterization of the material. In addition, o
determine the effects of various material characteristics on Joss factor, it is necessary that

cemparisons be made at identical frequencies.

The purpose of this research is to develop a frequency dependent analytical model,
based on material characteristics, that is capable of determining the material loss factors of a :
general laminated composite configuration. The material loss factor can then be used as |
input for structural analysis of compositc components. To ensure that the material
characteristics that have been shown to affect the loss factor are incorporated into the
analytical model, a detailed literature survey was carried out. This survey will be presented
in chronological order, detailing the experimental techniques used and the results obtained

for the damping loss factor of composites, as well as proposed analytical inodels.

A macromechanical analytical model is presented that incorporates the relevant
micromechanical effects of the material. An experimental apparatus is described as well.
To ensure that environmental sources of energy dissipation are minimized, the apparatus is
calibrated using a well charactenized metallic material. A robust testing methodology 1s
then proposed for use in the determination of the material loss factors. This testing
methodology is then used to determine the material loss factors of AS4/3501-6

graphite/epoxy and S-2 Glass/3501-6 composites.

The loss factors of two generic S-2 glass/epoxy configurations are then determined

using the analytical model. The results of this model are compared with the experimentally

determined loss factors to assess the validity of the proposed model. In addition,




parametric studies are performed using the proposed model to determine the effect of fiber

orientation and stress couplings on the loss factor of S-2 glass/epoxy composites.

Finally, topics for future work are proposed in an attempt to provide improvements
to the experimental technique, to experimentally examine the effects of specific material

characteristics on loss factor, and to provide a more universal analytical model for

incorporation into structural analysis routines.




Chapter 1

- RESEARCH OBJECTIVE

Organic matrix composite materials are viscoelastic because of their material
constituents. This means that they have rate and temperature dependent properties. One

property that has yet to be taken advantage of is their inherent vibration damping.

There are two plausible reasons that composite design does not incorporaie

considerations for damping. (Gne is the lack of an analytical model that can be easily

incorporated by the designer using existing structural analysis codes. The second reas 11is
that there is a lack of experimental information available which can be used to either

determine the frequency dependent loss factor or to verify proposed analytical models.

The purpose of this research is two fold. The first goal is to develop an analytical
model which can account for the frequency dependent damping loss factor characteristic of
organic matrix composites. This model should be capable of determining the various
directional dependent loss factors that the material will possess. These directional
dependent loss factors occur because of the directional dependence of the material
properties of composites. The analytical model will attempt to incorporate the material
characteristics which can affect the damping loss factor and will be formulated to provide

information thar the soructural analyst can utilize in the design of high damping structuraily
y g



efficient composite components.

In additon to the development of an analytical model, the experimental determination .
of the damping loss factor will be underaken. This experimental investigation will be used
to verify the analytical model and to provide insight into the material characteristics which
affect the vibration damping. This experimental effort will consider first and foremost the
appropriateness of the technique. In the testing of materials for damping properties, the
damping of the material as well as the damping provided by the test environment must be
determined. To obtain an accurate characterization of the material loss factor, the developed
experimental technique considers methodologies to minimize all sources of possible energy
dissipation. To ensure th:i the technique minimizes externai sources of energy dissipation,
the system will be calibrated using a material which has a low damping loss factor and has

a loss factor which can be analytically determined over an appropriate trequency range.

With this developed, calibrated expersimental technigue, the damping loss factor cf
two comiposite systerns will be deterrnined over a frequency range of interest for structural
app'icatons, up to 1500 Hz. The materials which will be tested are AS4/3501-6 graphite
¢poxv and §-2 Glass/3501-6 glass epoxy. These two systems are being investigated
because of their piesent consideration for nuinerous structural applications. Determination
of the loss factor as a function of frequency will provide information with which to verify

the analytical model as well as specific information which can be used for structural

damping designs.




Chapter 2

BACKGROUND

In order to assess the state of technology on the mechanical vibration damping of _ -_':'-
composites, a chronological historical review of the research published to date on the B
damping loss factor of composites will be given. This survey will be limited to continuous
fiber organic matrix composite materials. This background is divided into two main
sections: experimental results of the vibration damping of monolithic composites and the

analytical models that have been developed to predict the vibration damping of these

material characteristics that affect loss factor can be identified. The experimental values of
loss factor and the techniques used are reported so that the material and procedural
characteristics that affect the damping loss factor, such as specimen geometry and mode of
excitation, can be identified. In addition, the results of the research performed by the
various authors are compared to highlight inconsistencies in their results. These
inconsistencies are considered in the design and development of a robust testing

methodology.

Anorther configuration that has been intentionally omitted from this discussion is the

constrained layer configuration. Several reviews have been written on this area. Interested

readers are referred to references 5-7.
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Continuous fiber organic matrix composites have been utilized for numerous
structural applications because of their structural performance, the weight savings
achievable and the reduction in life cycle costs they may allow. Composite structures also
have the added advantage of coirosion resistance and design flexibility. An additional
property possessed by tne composite materials is their inherent vibradon damping -

characteristics resulting from the numerous loss mechanisms within the material.

In general, the damping loss factor for metals is a function of frequency. A typical
maximum value of the damping loss factor for 2024-T4 aluminum is approximateiy 22x 104
[Crandall (8)], mild steel has a maximum loss factor of approximately 17x104 [Friend and
coworkers (9)], and brass has a maximum loss factor of approximately 8x10+4 [Macander
and Crane (5)]. Composite materials, by comparison, have shown damping loss factors as
high as 325x104 for a standard GY-70/934 unidirecticnal composite oriented in the 90
degree directon [Haines (10)]. In the O degree direction, the loss factor for a general
graphite/epoxy composite is approximately 30x10-4 [Suarez and Gibson(11)]. These
examples of composite loss factor show that composite materials offer the possibility of an

order of magnitude increase in damping over conventional structural metallic systems.

The literature was searched using the following search data bases: DIALOG, NTIS
data base; DIALOG, Aecrospace data base; DIALOG, METADEX data base; DIALOG,
ISMEC Mechanical engineering data base; DIALOG, SCI data base: and DTIC (Defense
Technical Information Center). In addition to these data bases, independent searches

through the Journal of Composite Materials, Composites, ASTM Conference Proceedings,

SESA Conference Proceedings, AIAA Conference Proceedings, and other composite
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related publications were carried out to identify articles on composite vibration damping.
This latter independent search was to ensure that important publications not in the above

mentioned data bases were not overlooked.

Review of Terminol

Dynamic mechanical vibration damping is defined as any process that transforms the
energy of a mechanical vibration into some other form of energy which is irrecoverable.
From an energy standpoint, then, the mechanical vibration damping is the ratio of the
change in stored energy of the system, AW, to the maximum stored energy during a cycle,
W. The change in stored energy per cycle is therefore the energy loss per cycle. This
value has then been defined using other terminologies such as the specific damping
capacity,'y, the damping loss factor,n, the dyramic amplification factor, Q, and the

logarithmuc decrement, 8. The relation between these various values is given as follows;

AW
(1)

In this disssertation, the damping values are reported in units of damping loss factor,
M. From the relatons given in equation 1, then, if all of the energy is dissipated in one

cycle, the value of 1 will be 0.159. A material loss factor of 0.1 for a structural

applications is in general very desirable.




xperimental Testin minated Composites

There has been a proliferation of work on the mechanical vibration damping of
lamir.ated composite materiais. The composite material that has been investigated most
often for its vibration damping response is graphite/epoxy. This material has been uulized
in fatigue critical applications. As such, if a graphite/epoxy structure is set into undamped
resonant vibration, fatigue degradation is possible, which can severely reduce the service

life of the structure.

Because of this fatigue problem, it is not surprising that the earliest research on the
problem of damping was conducted by the Air Force. Kurtze and Mechel (12) investigated
the use of various materials that could be utilized as a core material for sandwich structures.
Instead of considering single composite systems, various hybrid combinations of systems
were investigated in order to possibly maximize the damping over a wide range of
frequencies. The core materiai used included glass fiber and asbestos embedded in various

fluorine-containing polymers and viscoelastic materials. In this work, they investigated,

among other things, the effect of fabricating a structure with a stratified arrangement of

different materials. Each material had a different frequency and temperature at which the
maximum damping loss factor occurrred. They assumed that it might be possible in this
type of arrangement to achieve a structure kaving the additive qualities of the various
subsystems, and that this would result in a structure with high damping characteristics over
a large tlemperature and frequency range. Their testing, however, showed that, in the
stratified arrangement. achieving these additive qualities of the various subsystem materials

was not possible. The reason is that when a material having a high shear loss factor at a
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correspondingly higher temperature is covered by a material which has a lower shear loss
factor and shear modulus, the first material cannot experience a full shear deformation. The
reason is that the majority of the shear motion occurs in the softer layer. If the shear
properties of the various materials are nearly equal at the various temperatures, and these
materials have maximum loss factors at various frequencies, then it may be possible for an
additive type vibration damping effect to result. In most cases, however, the shear moduli

of these different materials are very different, thereby nullifying the additive effect.

Kurtze and Mechel (12) then investigated the properties that would result if the
materials with various loss factors at various frequencies and temperatures were arranged in

a parallel strip arrangement. Using the same material as in the first study, they achieved a

Se

partial additive effect in the damping characteristics of the parallel strip sandwich structure.
However, no quantitative data are presented concerning the results of the parallel

arrangement of the materials.

Schuliz and Tsai (13) investigated the dainping ratios of unidirectional glass fiber :'
reinforced composite beams. These beams were tested in free and forced vibration in a -
cantilever beam configuration. The E-glass beams were 0.005 in.(0.127 mm) thick and
had widths of 0.75 or 1.0in.(19.0 or 25.4 mm). These beams had a total length of 13.5
in. (343 mm). The specimens were tested by securing them midway along their length via
two hardened steel cylinders which were in turn attached to the moving element of an
electromagnetic vibration exciter. These beams were excited via a sine wave mode into

their various natural frequencies. The excitation amplitude of cscillation was monitored by

an accelerometer while the response was monitored by a foil strain gage mounted on the top
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of the specimen near the clamped end. The excitation and response signals were observed
on an oscilloscope. The resonant frequencies were determined by observing the peaking of
the response on the oscilloscope trace while varying the input excitation frequency, keeping
a constant excitation amplitude. For the low frequencics of vibration, the frec vibration
decay measurements were used to determine the damping loss factor. In this method, the
beam is excited into its resonant vibration, the power to the exciter is cut, and the response
amplitude decay is measured on an oscilloscope race. The decay response is measured

over 10 and 50 cycles. The loss factor is then determined using the following equation

n )

where ag is the amplitude of the forced resonant vibration when the excitation is removed,
a,, is the amplitude of the vibration at the n'» cycle after the power is cut to the exciter and n
is th:  le at which the amplitude a,, is measured. The damping loss factor for higher
mode:. - excitation was determined using the half power band width method [Newland
(14)]. In this method, the width of 2sponse at -3dB of the peak of the resonant
frequency, ., is determined. The: . of this value to the resonant frequency, f,, is the
damping ~ s factor for the material at a particular frequency. The loss factor is therefore

given by

(3)

The { :quency and the band width necessary for determining the damping loss factor were

determined by direct measurements on the oscilloscope trace.
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These metheds had the disadvantage that they required a visual interpretation of either
the decay of the amplitude of oscillation, since this decay was read directly from the
oscilloscope trace, or the band width at -3dB of the resonance peak. Also, the actual
determination of the decay was a time-consuming process. In addition, direct comparisons
with other samples were difficult since the only hard copy of the data was from the

photographs of the oscilloscope traces.

Four angle-ply orientations were tested. These included 0, 22.5, 45, and 90 degree
specimens. Results showed that the materials could be ranked in decreasing order of
damping as follows: 45 > 90 > 22.5 > 0. In all cases, the damping tended to increase with

increasing frequency.

In this investigation, the effect of environmental sources of energy dissipation
appears to have been neglected, such as aerodynamic damping and the effect of the
clamping on the specimen. Because of this, the magnitudes of the loss factor are in

question.

Adams and coworkers (15) investigated the damping of unidirectional carbon and
glass polyester reinforced composites. The purpese of the work was to determine if the
damping capacity of the composite could be predicted from knowledge of the fiber content,
the matrix, and the macroscopic stress system, and the effect, if any, of the fiber-matrix
interface. The damping values reported in the paper are in units of damping capacity, y.

The relationship between the damping capacity and the damping loss factor, 1, was

previously given in equation 1.
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The carbon fiber used in this investigation had a tensile modulus of 55 x 10° psi
(379 GPa) and a tensile strength of 250 ksi (1.72 GPa). The glass fiber was an E-glass
with typical tensile modulus and strength of 10.5 x10° psi (72.4 GPa) and 500 ksi
(3.45 GPa). The specimens were tested in both torsion, to measure the specific damping
capacity of the forced vibration, and in flexure, to measure the damping capacity in the free
mode oscillation. The latter technique had the specimen supported at its node points by
knife edges. This is the only investigation presented herein which tested the composite
using knife edge supports. The experimental procedure that is currently used suspends the
bram specimens from two of its node points by strings. The fiber volume fraction of the
glass specimens investigated by Adams and coworkers (15) was varied from 0 to 70%.

The fiber volume fraction of the graphite composite specimens was varied from 0 to 50%.

in ihe wrsion iesiing, ilic auihors reporied thai the daimping loss facior of the carbon
fiber composite was dependent on the stress amplitude. This dependence was attributed to
the development of internal damage in the material which led to the increased damping as
the stress amplitude was increased. In the glass system, however, the damping loss factor
was independent of the stress amplitude. Both fiber systems showed a decrease in the
damping loss factor by approximately a factor of two as the fiber volume fraction of the
systems was increased (Figure 2). This decrease can be attributed to the fact that the resin

makes a strong contribution to the damping capacity of the material, whereas the fibers'

contribution is substantially less.

In the flexural testing, the damping loss factor showed a decrease as the fiber volume

fraction was increased, similar to the decrease seen in the torsion testing (see Figure 3). It
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Figure 2 Comparison for the damping loss factor for graphite/epoxy (CFRF) and
glass/epoxy (GFRP) unidirectional composite materials as a function of fiber
volume fraction at constant maximum shear stress of 200 1bf/in2 (1.4 MPa)
tested in torsion (after Adams and coworkers (15)).
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Figure 3 Variation of the damping loss factor for graphite/epoxy (CFRP) and glass/epoxy
(GFRP) unidirectional composite materials as a function of fiber volume fraction
tested in flexure (after Adams and coworkers (15)).
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was shown that the stress amplitude had a mild effect on the damping loss factor, with the
carbon fiber experiencing a slight increase similar to the increase seen in the torsion testing.
In the glass fiber composite, a slight decrease occurred as the stress amplitude was
increased, unlike the effect that was seen in the torsion testing. The damping loss factor of
the two systems experienced nearly identical degradations as a function of the fiber volume
fraction, reaching an asymptotic value of damping loss factor of 16x10+4 at a fiber volume
fraction of approximately 60%. This result - that the damping loss factor of the
glass/epoxy decreased as the amplitude of vibration increased - is contiary to what was
expected, since aerodynamic damping should provide a contribution to the material
damping; no explanation of its cause was given. In the torsion testing, the damping loss
factor showed a linear decrease with increasing fiber content, whereas the damping loss

factor for the flexural testing showed a rapid dropoff with increasing fiber content.

Adams and coworkers (15) identified the possiblz sources for the energy dissipation
as the fibers, the resin, the fiber-resin interface, and cracks in the material. All of these
variabies, with the exception of the cracks, can be modified to fit the specific needs of an
application. The factors having the largest contribution to the damping loss factor are the

resin and the fiber-resin interface, both of which can be readily varied.

Another vaniable that was not considered in this investigation was the effect of
frequency on loss factor. As the material is made stiffer, the resonant frequency is
increased when identical specimen geometries are utilized. The frequency dependence of

the matrix material loss factor is unknown, although it can be assumed that a frequency

dependence exists. The effect of fiber volume fraction on loss factor given in this
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investigation cannot be explicitly extracted.

Clary (16) investigated the cffect of fiber angle and panel thickness on the damping of
boron epoxy composite panels. In all cases, the panel configuration was that of an angle
ply, +0. The fiber angles investigated were 0,10,30,45,60,and 90. Panel thicknesses
were 0.033, 0.060, and 0.111 in. (0.84, 1.53 and 2.82 mm) corresponding to 6, 12 and

24 ply laminates. Typical fiber volume fraction was between 48 and 50%.

The specimens were tested by suspending them from two node points which were
experimentally determined for each frequency of vibration used. The panels were set into
resonant vibration via an electromechanical shaker with the peak amplitude determined by
an accelerometer attached to the specimen. After steady state vibration was achieved, the
power to the shaker was cut and the decay in the vibration amplitude determined. Polar
plots of the form of magnitude and phase of the input acceleration normalized 10 the input

force were obtained. The damiping loss factor was obtained from these plots.

The results of the testing indicated that the damping loss factor was inversely
proportional to the number of layers of the composite. As the number of layers increased,
it was shown that the fiber angle at which the maximum damping loss factor occurred
decreased from 60 degrees for the 6 ply laminates 1o 30 degrees for the 24 ply laminates.
The damping loss factor of the composite panel showed only a moderate increase over that

of aluminum. The maximum damping loss factor of the boron/epoxy specimens tested was

62x10+4, This value is high compared with some of the other composite samples that will

be discusscd later.
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It should be noted that as the thickness of the material is increased, the effective beam Ca
! stiffness is also increased. This resuits in an increase in the resonant frequency of the |
beam. As such, the effect of thickness on the beam loss factor determined by Clary (16) is

in actuality a combined thickness/frequency effect.

The investigation by Clary (16) complements ihe earlier experimental investigation on
the effect of fiber orientation on the damping loss factor performed by Schultz and
Tsai (13) who determined the damping loss factors at only one thickness. The results from
these two experimental programs show the complexity involved when one must design a
composite structure to niiaximize damping. In one case, one could first specify the fiber
angle so as to maximize damping. This would then dictate the thickness of the composite
necessary to meet the desigr: loadings. However, from the results of Clary (16), it is seen
that increasing the thickness of the composite has the effect of reducing the matenal
damping loss factor, as a result of either the thickness itself or the variation in the resultant
resonant frequency of the stnicture. This means that the damping provided by the specific
fiber orientation may be partially negated by the added thickness. Another fiber angle
which has a lower damping loss factor may require a structural thickness less than the first
design, which may actually result in a structure with increased damping. Therefore, the
design t¢ maximize the damping of a structure will obviously be an iterative process on

both fiber orientation and thickness.

In addition to the frequency effect, one other factor was not taken inte consideration

for the material tested. For the off-axis matenals tested by Clary (16), a bending twisting

coupling occurs when the specimen is placed in bending because the material is
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unbalanced. The twisting that is occurring may alter the damping through additional energy
dissipation. The magnitude of the twisting effect is reduced as the material thickness is
increased. This would result in a decrease in the coniribution to the specimen damping loss

factor due to the reducdon in twisting as the material is made thicker.

In another experimental study, Schuliz and Tsai (17) investigated the effect of panel
stiffness and frequency of test on the damping loss factor of glass fiber reinforced
laminates. To determine the effect of stiffness on damping, they experimentally determined
the storage and loss moduli of quasi-isotropic E-glass panels. Two panel configurations
were used, (0/60/-60)g and (0/90/45/-45)s. The experimental procedure utilized the free
vibration decay of a sinusoidally excited double cantilever beam specimen that was excited
to its natural frequencies up to the tenth mode. The damping loss factor was determined
using the half power band width method, equation 3. The same test apparatus was used as

one described previously [Schultz and Tsai (13))].

To verify that their results were a function of the materia! and not of the test
procedure, Schultz and Tsai (17) performed additional tests on the specimens. First, the
test apparatus was placed in a vacuum chamber evacuated to a pressure of :0°2 torr.

Second, they varied the clamping pressure of the specimens in the test fixture. Neither of

these two experimental setups changed values of the loss factor obtained in the routine

procedure described previously.

The results of the testing indicated that the static modulus was between 0 and 20%

lower than the dynamic modulus. There was also an increase in modulus with increasing
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frequency. The relation between the resonant frequency and the modulus is given by the

following equation:

- (B, L)’
n = 3 4.5 ‘
2n [Ebk/ 12 p L7 ] (4)

where F| is the nth mode resonant frequency; B, is the corresponding eigenvalue of the
frequency equation governing the motion of a uniform cantilever beam; E is the effective
storage modulus; Y is the mass per unit length; and b, h and L are the beam width,

thickness and length, respectively.

As part of their experimental program, Schultz and Tsai(17) determined the dynamic
properties of the material, i.e. E;, E,, G2, and vj3 . Their results showed that the ';T -
analyiically deiermined static and dynamic moduli were predictable with the knowledge of
the ply properties for the two configurations used in this study. The static and dynamic
moduli of the material were then used to predict the complex moduli of various laminate
configurations using standard transformation procedures. The damping loss factor was
then analytically determined from the predicted complex moduli of the laminate using the
following equation:

M=

Ell 5)

where €'|; is the imaginary part of the complex modulus and E'y; is the real part of the

complex modulus of the particular laminate configuration in the primary loading direction.

Predicted properties of the unidirecticnal laminate were in good agrcement with properties ' ‘




24

determined experimentally. The experimentally determined damping loss factor for the
quasi-isotropic laminates was as much as 55% higher than that predicted analytically.
Plotting their results of the damping loss factor versus the direction of the outer ply fibers
to the flexural loading direction, Schultz and Tsai (17) obtained an asymmetric curve about
0 degrees. This asymmety was present for both of the iaminates tested. This result is
expected, since the stiffness of the beams tested with the cuter fibers oriented at different
angles to the longitudinal axis of the beam have inner plies which have different
orientations. For example, if the (0/+60), quasi-isotropic beam is rotated 30 degrees, the
beam effectively becomes (30/90/-30),, whereas when the beam is rotated by -30 degrees it
effectively becomes (-30/30/90); an obviously stiffer configuration in flexure. In addition,

the analytical predictions also showed this asymmetry.

Anviher facior not noted eAplicitly in the curves which presented the loss factor asa
furniction of fiber orientation was this: the frequency at which the results were plotied was
not the same for each fiber orientation tested. In the same paper, however, Schultz and
Tsai (14) experimentally showed that there is a frequency dependence on the loss factor, as
will be discussed below. The results that were actually reported did not indicate the fiber
angle dependence of loss factor, but instead a combination of the effect of fiber angle and

frequency on the loss factor.

In their investigation on the effect of frequency, Schultz and Tsai (17) again used the

quasi-isotropic E-glass laminates. They varied the outer fiber orientation, thereby varying

the flexural stiffness of the material. For both laminates, the loss factor was determined

with outer ply angles of 0, 45 and 90. As the frequency was increased from the first




25

resonance, the Jamping decreased to a frequency of approximately 800 Hz. As the
frequency was increased from this level, the damping loss factor increased with frequency
up to the highest frequency of test, approximately 10000 Hz. The maximum damping loss
factor was obtained from the (0/60/-60), laminate tested in the 90 degree direction, having a
value of approximately 151x104. The minimum value of the damping loss factor was for
the (0/60/-60), panel tested with the outer fibers in the 0 degree direction, having a value of

approximately 25x10-4.

Friend and coworkers(9) described some of the general test methodologies and
commented about the vibration damping characteristics of composiies. They reported that
five methods are used for testing these materials to determine the mechanical vibration
damping characteristics of the material. Two of these are more prevalent than the others.
The first method utilizes a forced vibration at the resonant frequency. The damping loss
factor is calculated from the curve of amplitude versus frequency by dividing the bandwidth
at the half power points for the resonance of the nth mode, Af,, by the response frequency
of the n'h mode, f,, as given by equation 3. The second method involves striking the
material and measuring the free decay in the amplitude of the vibration. The damping loss
factor is then determined as the ratio of the successive amplitudes of vibration of the

specimen as given previously by equation 2.

Friend and coworkers (9) indicated that the damping of the material is a function of
many variables, including the thermal conductivity, modulus, void content, and fiber to

resin bond effectiveness, among others. They summarized the vibration damping of

various metallic and composite systems. This information is shown in Table 1. Here it can
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be seen that .he damping loss factor is a function of angle for the composite systems. The
90 degree orientation has the kighest damping, the 0 degree orientation the lowest. These
results are contrary to those presented by Schultz and Tsai (17), where the 45 degree
off-axis cpecimen had the highest damping. This table also shows that the damping loss
factors for composite systems have values typically an order of magnitude or greater than

those of the metallic systems, indicating the inherent damping characteristicc of the material.

Table 1: Comparison of Damping Loss Factors of Various Materials Systems (after Friend,
Poesch, and Leslie(9))

Damping Modulus
Material Orientation | Frequency| Loss Factor x 10-6psi
(Hz) (x 104 (GFa)
2024 Al 3000 9.0 10 (6%.0
6061 Al 4000 55.0 10 (69.0)
Mild Steel 4000 17.0 28 (193.1)
1020 Steel 6900 38.0 29 (200.0)
Scotch ply 1002 0 1
E glass/epoxy 4200 70.0 5.1 (35.2)
9100 %0.0 5.1 (35.2)
SP-272
Boron/Epoxy 0 4000 67.0 26.8 (184.8)
0/90 4401 57.0 18.3 (126.3)
90 4200 330.0 3.2 (21.2)
2002M
Graphite/Epoxy 0 4000 157.0 27.4 (188.9)
22.5 4000 164.0 47 (32.4)
45 3800 186.0 1.8 (124)
90 4000 319.0 1.0 (6.8)
(0/22.5/45/90) | 4000 201.0 10.0 (69.0)
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Adarns and Short (18) investigated the effect of fiber diameter on the vibration o
damping of glass/polyester composites. They fabricated beams using glass fibers having
diameters of 10, 20, 30, and 50 um. As the fiber diameter is decreased, the ratio of the
surface area to volume increases. Thus, for a given fiber volume fraction of the laminate,
the contribution to the damping from the interfacial bond between the resin and the fiber
increases. This increase is not only the result of the increase in the bond area but is also
attributed by Adams and Short (18) to the increase in the stress concentration in the matrix
as the fiber diameter is decreased. This increased stress concentration results in an increase
in the strain energy per unit volume of the matrix. As the fiber volume fraction was
decreased from 70% to 35%, the sensitivity of the loss factor to the surface to volume ratio
of the fibers was greater, which gives credence to the hypothesis that there is an additional
effect on the loss factor besides the increase in the surface to volume ratio. Adams' and
Short's (18) test results, shown in Figure 4, indicate that the damping toss factor of the
beam increased as the fiber diameter was decreased. This shows that the fiber/matrix ~.:'..
interface can be a major damping mechanism in composite materiuls, not only due to the
bond itself but also to the stress concentrations that occur. In addition, the viscoelastic
character of the interphase region around the fiber may be providing an additive effect on
the damping for the smaller diameter fibers. Although the fiber diameter affected the
damping loss factor, it should be mentioned that the fiber diameter did not affect the storage .

modulus of the material.

Adams and Bacon (19) studied the effect of fiber orientation and laminate geometry p
on the damping properties of graphite/epoxy composites as measured in flexural and

torsion tests. For the flexural tests, the material was in the form of beams. These were

clamped in the center with cylindrical steel clamps, which were subsequently attached to
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electromagnetic coils. These coils provided the necessary mechanical vibration. The
system was set to the resonance of the beam and then stopped. The beam was then set into
free vibration and the resulting decay in amplitude of oscillation measured. These authors'
results of the testing of 0 degree graphite/epoxy 1evealed that, since there was only minimal
damping, aerodynamic damping played a significant role in the measured values of the
damping loss factors for the beam. Because of this, Adams and Bacon (19) tested their
remaining beams in a vacuum. They also suggested that, since aerodynamic damping can
significantly contribute to the apparent damping provided by the material, other
investigators who did not consider this additional contribution may have spurious results.
The specimens used in this investigation were approximately 0.5 x 0.1 x 9.0 in.

(12.7 x 2.5 x 229 mm ). Adams and Bacon (19) made theoretical predictions for the
damping loss factor of the material, based on the strain energy of the material associated
with the swresses in the specimen geometry directions. Their predictions of the material's
strain energy dissipation are dependent on the compliance coefficients and the stresses
induced in the material. Their theory indicates that the damping is a nonlinear function of

stress, thereby having no closed form solution and requiring numerical evaluation.

In the flexural mode, Adams and Bacon (19) found a strong dependence of the
damping loss factor on the laminate orientation. They found a peak in the damping loss
factor at +35 degrees for the off-axis specimen tested in vacuum. This is a result of a large
energy dissipation in shear. The damping-associated stresses in the fiber direction become
negligible when fiber angles are greater than 10 degrees. In the case of angle-ply
laminates, a maximurn in the specific damping factor was found to be approximately 45

degrees. Graghs of the two results are shown in Figures 5 and 6. In all cases, the

experimental values are greater than the theoretical values, although they follow the trends
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Variation of flexural modulus, Ey, and damping loss factor, 1y, of unidirectional
high tensile strength graphite fibers embedded in DX210 epoxy resir with fiber
volume fraction of 50%, as 1 function of angle that the fibers make with the

longitudinal axis of the bearn tested in flexure with a maximum bending moment

of 2 Ibf-in. (0.226 N-m); O Ef, G 1, 1.0 in. (25.4 mm) wide specimen, ¢ E,
® ;0.5 in (12.7 mm) wide specimen. Predicticn for free flexure — Egy,
— - — Ny (after Adams and Bacon (19)).
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Variation of flexural modulus, Ey, and damping loss factor, Ny, of cross-ply, +8,
high tensile strength graphite fibers embedded in DX210 epoxy resin with fiber
volume fraction of 50%, as a function of angle that the fibers make with the
longitudinal axis of the beam tested in flexure with a maximum bending moment

of 1 Ibf-in. (0.113 N-m); 0 E(, O 11, 1.0 in. (25.4 mm) wide specimen, ® Ey,
® ¢ 0.5 in (12.7 mm) wide specimen. Prediction for frec flexure — Eg,
— - — Ti¢r {after Adams and Bacon (19)).




quite closely.

When an off-axis material contiguratior: is subjected to bending, the material also
experiences a twist, since the material is unbalanced. The magnitude of the twist varies
with fiber orientation, monitonically increasing from 0°, reaching a maximum at a fiber
oriertation of approximately 30°. For an angle-ply laminate, there is no bending-twisting
coupling. The variation in the fiber orientation at which the loss factor reaches a maximum

for the off-axis and angle-ply laminates would therefore be expected to be different.

Another point not indicated specifically in the figures, but evident in additional test
resuits, is that the damping was amplitude dependeni. Since the specimens were tested in a
vacuum, aerodynamic damping, which has been previously shown to contribute
significantly to the damping of a material, should not have arisen. However, this increase
in damping with increasing amplitude of vibration could have arisen due to the increase in
stress discontinuity at the clamped section of the beam or from the frictional losses at the
clamped region. In both cases. the energy dissipation would have probably been in the
form of localized heating of the specimen or from viscoelastic effects in the resin at these

higher stress levels.

When cross-ply laminates were tested, it was found that the orientation of the outer
plies had a pronounced effect on the damping of the laminate. As the beam stiffness was
increased, the damping loss factor of the material decreased. The damping loss factor

values that were obtained ranged from 13x104 for the beam with a stiffness of 14x10° psi

(96.5 GPa) to a minimal value of 10x104 for a beam with a stiffness of approximately
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25x10% psi (172.4 GPa). Since the damping loss factor is so low for the cross-ply
arrangement, it would not be a satisfactory material for structural damping in flexure. In
addition to varying the beam stiffness in their tests, by using beams with idcnrica}
dimensions Adams and Bacon(19) also changed .he resonant frequency at which the loss

factors were calculated.

In one of the specimens tested, Adams and Bacon (19) obtained a damping loss factor
that was approximately six times higher than what they predicted theoretically. Upon
examining the specimen, they found that it contained an interlarninar crack running
approximately 1 in. (25.4 mm) along its length. This shows that the damping of the
composite material is very dependent on the quality of the test specimen. Whereas the
structure should be as free of defects as possible to maximize the mechanical properties.

imperfections present in the matenal will enhance the damping.

For investigations on the material loss factor, then, it is therefore imperative that the
quality of the material be determined; this will ensure that the losses determined are due to
the material and not imperfections in the material. The energy dissipation which can occur
in composites having internal defects results from dissipation of heat from the friction
occurring at the imperfection sites. The heat generated at these material imperfections, such
as cracks in the fibers and matrix and delaminations, can be readily detected at the surface
of the composite. This characteristic has led to the development of a nondestructive
evaluation technique called thermography(20,21,22) which assesses the material quality by

monitoring thermal patterns on the surface of the specimen which has been either passively

heated or actively heated by vibration. These defects are beneficial in that they enhance the
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mechanical vibration damping, but are obviously deleterious in that they reduce the
mechanical properties of the structure. Parker (23) reported that the heat generated will
adversely affect the properties of the composites due to the possible degradation of the
matrix when nonconductive fibers such as glass are used, but may r:ot be a problem if

conductive fibers such as graphite are used.

Adams and coworkers (24) experimentally determined the damping loss factor of
various composite systems in angle-ply, off-axis and quasi-isotropic configurations. They
attributed the vibration damping achieved in composites to the interfacial damping present
by viriue of the laminated structure of the material. They reported that vibration damping
limits the amplitude of the resonant vibration and, therefore, limits the radiated noise and
onset of fatigue degradaion. The materials used in their investigation were graphite and
glass fibers embedded in an epoxy matrix. The specimens tested were beams which were
clamped at their centers and vibrated using a coil/magnet pair at the material's resonant
frequencies in a free-free flexural mode. The results obtained on the effect of vibration
amplitude on the damping indicated that increasing the stress level from very low levels to
10% of the failure load did not affect the resultant damping. This is contrary to the results
shown earlier by Adams and Bacon (19), who found that the damping loss factor increased
with increasing cyclic bending moment. It should also be noted that Adams and
coworkers (24) did not explicitly state that the tests were conducted in vacuum. If the
specimens were tested in air, then the nondependence of loss fuctor on the amplitude of

vibration would be contrary to the earlier work of Adams and Bacon (19).

Adams and coworkers (24) investigated the effect of specimen dimensions on the




damping loss factor of the graphite/epoxy specimens. The aspect ratio of the beams, 1/h,

was varied from 90 to 53. It was experimentally shown that as the aspect ratio was
decreased in the range indicated above, the damping loss factor increased by approximately
25%. Adams and coworkers (24) attributed the increase in loss factor to the increase in the
shear damping contribution to the damping of the beam in flexure. They theoretically
indicate that the damping in longitudinal shear is of the order of 50 to 100 times larger than
the tension or compression component. They also indicate that although the amount of
energy stored in shear is small. the large damping that is aitributable to the shear component
can substantially contribute to the total predicted value of the damping loss factor in flexure.
Another factor that changed as the aspect ratio was varied was the natural frequency of
vibration. As the aspect ratio increased, the frequency should have decreased. The direct
effect of aspect ratio on the damping loss factor was therefore not measured explicitly in the

above tests.

For the angle ply specimens, Adams and coworkers (24) showed a maximum in the
damping loss factor occurring at appruximately 45 degrees with a vaiue of approximately
146x10 and decreasing slightly as the angle is increased to 90 degrees 10 a value of
approximately 108x10-4. It was also mentioned that the off-axis specimen had a maximum
in its damping loss factor at an angle of 35 degrees, which is probably the result of the
stress couplings as was previously discussed. The final configuration testeq was a
(0/-60/60), quasi-isotropic laminate. Testing revealed a nonsymmetric relation of damping
capacity vs. angle as measured from the 0 degree direction, which is similar to the eastier
findings o Schultz and Tsai (17). The minus angle side had a peak in the damping loss

factor at 45 degrees with a value of approximately 108 x 104, whereas the plus angle side

had its peak in the damping loss factor at 90 degrees with a value of approximately 93 x10#
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(see Figure 7). Also given in Figure 6 is the flexural modulus as a function of outer ply
orientation. It can be seen that the flexural modulus, like the damping loss factor, is

nonsymmetric about the 0 degree orientation.

Figure 7 shows that the loss factor varies inversely with the flexural stiffness. In
general, as the stiffness of the material is increased, the loss factor is decreased. However,
this direct observation is still abscured by the fact that the frequency of test for the various
orientations must have been different since the natural frequencies of the material vary with

stiffness also.

Paxson (25) investigated the damping capacity of boron fiber reinforced epoxy. He
used the double cantilever beam configuration previously described. In addition, he had
epoxy shoulders molded onto the upper and lower surfaces of the specimen at the center of
the beam where it was to be clamped. This alleviated any stress concentrations that may

have arisen if the specimen was clamnped directly. The specimen was tested in a vacuum

chamber. The experimental apparatus was also tested for additioral energy losses by

testing an aluminum beam and comparing .he results with the well established thermoelastic
mode] developed for determining the damping in metals developed by Zener (26). The
specimen was excited in a sine wave mode with a frequency centered near the first resonant
frequency of the beam via an electromagnetic shaker attached to the epoxy shoulders. The
specimen was also dynamically balanced to ensure that each beam had equivalent vibration
characteristics of the same maximum amplitude at the same frequency. Paxson (25) used
an optical displacement foliower to measure the tip deflections during the testing. The

damping loss factor was determined using the haif power band width method.
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laminate consisting of high modulus graphite fibers embedded in DX209 epoxy
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Paxson's (25) results indicated that the (45/-45),, specimen had the maximum
damping factor; the 90 degree specimen had values slightly lower, and the O degree
specimen had values approximately an order of magnitude lower than the former two.
These results, given in Table 2, show the same angular dependence demonstrated by

Adams and coworkers (24) for the graphite/epoxy composite beams.

Table 2: Effect of Fiber Orientation on the Damping Loss Factor of Boron Fiber Reinforced

Epuxy Composites in the Forced Vibration Mode(after Paxson (25)).
Fiber Storage Loss Damping
Orientation | Thickness | Frequency Modulus Modulus Loss Factor
(degrees) | mm (in) (Hz) x 106psi (GPa ) | x 100psi (GPa) | (x 104
0 1.96(.077) 34.33 26.5 (182.7) 6.5 (44.8) 24.8
0 1.96(.077) | 135.02 23.5 (162.0) 6.3 (43.49) 27.0
Y 1.96(.077) | 302.40 22.5 {155.1) 8.6 (59.3) 38.3
45/-45 | 2.11(.083) 32.25 4.0 (27.6) 7.8 (53.8) 197.0
45/-45 § 2.11(.083 106.10 3.7 (25.5) 0.5 (65.5) 259.0
45/-45 12.11.(083) | 153.25 3.7 (25.5) 10.5 (72.4) 283.0
90 1.93(.076) 29.25 3.9 {26.9) 5.5(37.9) 144.0
90 1.93(.076) 53.20 4.0 (27.6) 6.3 (43.4) 159.0
90 1.93(.076) | 136.25 29 (20.0) 8.3 (57.2) 290.0
90 1.93(.076) | 262.00 2.8 (19.3) 8.1 (55.9) 290.0
Paxson (25) alsc tested the material in a free-free vibration mode. The specimen was

suspended from a rigid support structure with no. 50-sized cotton thread and attached to the
beam at its node points for the first mode of vibration for a free-free beam. The purpose of
the threads was to decouple ihe specimen from the support structure, alleviating any

transfer of energy from the beam specimen to the support apparatus. The beam was excited

at one end and the displacement of the other end measured by a noncontact displacement

follower. The damping loss factor was determined by the amplitude decay method using
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equation 2.

In this mode of vibration, again the (45/-45),, beam had the highest damping factor,
the 90 degree material had values slightly lower, and the ( degree material had values
approximately an order of magnitude lower than the former two. The results are shown in
Table 3. It should also be noted that the frequencies of testing for these specimens were

not equivalent.

Table 3: Experimental Results on the Effect of Fiber Orientation on the Damping Loss
Factor of Boron Fiber Reinforced Epoxy Composites in Free-Free Vibration

(after Paxson (25)).
Fiber Damping
Orientation Thickness Frequency Loss Facror
(degrees) in. (mm) (Hz) (x 104)
0 077 (1.90) 34.2 11.7
0 077 (1.96) 140.1 12.3
0 077 (1.96) 300.0 13.5
45/-45 083 (2.11) 32.1 219.0
45/-45 083 (2.11) 106.4 217.0
45/-45 083 (2.11) 155.0 199.0
45/-45 .083 (2.11) 313.0 239.0
0 076 (1.93) 29.1 154.0
90 076 (1.93) 52.6 165.0
90 076 (1.93) 134.2 195.0
950 076 (1.93) 262.8 210.0

Comparing the two experimentai procedures used in his testing, Paxson (25)

suggested that the damping loss factor determined using the forced vibration technique is

generaily higher than that determined from the free-free method. This difference is due
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primarily to the different states of stress in each of the specimens. In the forced vibration

technique, the maximum bending moment and maximum shear stress occur at the root of

the specimen. In the free-free case, the maximum bending moment occurs where there is

essentially no shear. In the forced vibration technique, then, energy is dissipated not only
by cyclic tensile and corapressive stresses, but also by cyclic shear swresses, which

therefore results in a high loss factor.

Gibson and Plunkett (27) investigated the vibration damping characteristics of glass
fiber reinforced composite materials. They investigated the effect of geometry, vibration
frequency and amplitude on the damping of laminated beams. They subjected
unidirectional and (0/90) crossply composite beams to flexural vibration. The specimens
were tested using the double cantilever beam configuration, having epoxy shoulders
molded to the center of the specimen, similar to that arrangement described by Paxson (25).
This allowed the specimen to be clamped without introducing damage and reduced stress
concentrations by shifting the clamping surface away from the region of high bending
strain, thereby reducing the energy dissipation that may occur at the mounting surface.
Each team specimen was a 51 ply laminate with dimensions 35.9 x 1.6 x 0.5 in.

(81.2 x 2.54 x 1.275 cm.). These bearns were excited with an electromagnetic shaker
attached to the epoxy shoulders. The bending strain of the material was monitored with a

strain gage mounted on the specimen surface. The specimen acceleration was measured

using an accelerometer mounted to the specimer: support clamp. The acceleration Lissajous

patterns were used to determine the damping loss factor of the composite. Gibsen and
Plunkett (27) point out that this type of analysis is valid only for small amplitude
vibrations. For large amplitude vibrations, the shear force and the bending moment had to

be detexmined from the characteristic function describing the mode shape [Bishop and
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Johnson (28)] and the measured strain at a particular location on the beam. Because this
method is much more complex, requiring visual interpretation of the acceleration Lissajous
patterns, and has been abandoned for other techniques, it will not be elaborated upon

further.

The beams were to be tested at large amplitudes. Since aerodynamic damping on the
composite has been shown to be significant at high amplitude vibration, the test on the
composite specimens was performed in a vacuum. For small amplitude vibration with the
cross-ply specimen oriented in the transverse direction, damping was primarily from the 90
degree piies, with little contribution from the 0 degree plies. This is because the resin,

which has the highest damping, is subjected to the highest strain in the 90 degree plies.

When thick beams in a cross-ply configuration are subjected to large amplitucs
vibration, the 90 degrec plies near the surfaces of the beam will reach their failure stress,
resuiting in cracks in the material. At this load, however, the 0 degree plies have not yet
failed and the beam can therefore still carry load. The mechanical degradation of the beam
is thus minimal, since the O degree piies are the primary load carrying components.
However, due io the material discontinuities s a result of the material damage, there is a
strain concentration in the matrix. Although the failure strain of the flexural specimens was
shown to be nearly the tensile failure strain when large amplitudes are used, the damping
increased by 20% at failure, indicating the positive eftect that damage and defects have on
the damping in composites. Gibson and Plunkeu (27) obtained experimental values for the

damping loss factor of 20x10- for the initial test of the specific specimen to values as high

as 100x10- for the third test of the same specimen. This result was also shown to occur in
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the unidirectional 90 degree specimens as long as the failure strain of the material was not
exceeded. This series of tests indicated that a damping loss factor variation is a more

sensitive measure of damage than a stiffness variation.

Maymon and coworkers (29) presented experimental results on the effect of moisture
and elevated temperature on the vibration damping characteristics of graphite/epoxy
composites. The specimens were tested in a cantilever beam configuration both at room
temperature dry and at 200° F (93°C) in a moisture saturated conaition. The specimens
were approximately 1 x 8 x 0.065 in.(25.4 x 203 x 1.65 mm ) with a fiber volume
fraction of 62% and both longitudinal and cross-ply fiber orientations. The specimens
were subjected to varicus conditionings prior to vibration damping testing. First the
specimens were dried for six days at 200° F (93°C), then tested in the flexural vibration
mode at their natural frequencies. Next, the same specimens were placed in a 200° I
(93°C) constant temperature bath for 45 days, after which they were weighed and the
vibration damping properties determined by testing in an environmental chamber at a
termperature of 200° F (93°C) and 70 to 80% relative humidity. After the specimens were
tested, they were weighed to determine if moisture loss occurred during testing. The
specimens were then redried at 200° F (93°C) for six days, and the dry condition vibration
damping properties were again determined. The results from the conditioning indicated that
the average weight gain for the hot/wet conditions was approximately i.53% for all
configurations tested. After testing in the hot/wet condition, the average weight loss

experienced by the specimens was 0.078%. After redrying, the average weight loss of the

specimens from their original weight was approximately 0.051%.
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The vibration damping results are presented in Table 4. The testing of the specimens
in such environmental conditions is relevant to the majority of composite structural
applications, since composites are normally subjected to various humidity and temperature
conditions. Maymon and coworkers (29) had assumed that the vibration damping
experienced by the specimens would increase in the hot wet condition due to the
plasticizing of the epoxy resin in this environment. However, the result; showed that
moisture increases the damping loss factor in specimens only where the matrix properties
are less dominant. In the (+ 45) and the (0/45 /90/-45), specimens, where the matrix is
strained to a higher level, the damping loss factor is actualiy decreased. These results show
that the stress state in the material affects damping in the material. Moisture causes
swelling in the matrix raaterial. When a conditioned specimen is subjected to the same
amplitude of vibration as an unconditioned specimen, the stress states in the material are
different, which was shown 10 affect the vibration damping of the material. After redrying,
these authors showed that the specimens’ vibration damping loss factors were the same or
in general greater than those obtained in the initial dry test condition. Examination of these o
specimens using both ultrasonic C-scan, and sectioning and subsequent examination with a
scanning electron microscope revealed that microciacks had developed in the specimen.
Such cracks enhance the damping characteristics of the test specimens (19). These results
show the possibilities for using the damping loss factor to measure the damage state of a

composite specimen.

Gibson and Plunkett (30) investigated the effect of amplitude and frequency on the
vibration damping of composite materials subjected to flexural vibration. The specimens

were subjected to a forced vibration so that a particular frequency and amplitude could be

input and the direct effects on damping could be obhserved. Tc measuie damping, the
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Table 4: Experimentally Determined Damping Loss Factor as a Function of Temperature
and Moisture Environmental Conditioning (after Maymon and coworkers (29)).

Matenal Average Effective Average Damping
Orientation Damping Modulus Loss Factor
(degrees) x 106 psi (GPa) (x 104)
Dry Wet Redried Dry Wet Redned
77°F 200° F 77°F 77°F 200° F T7°F
0 17.0 17.1 16.4 92 120 140
(117.2) (117.9) (113.1)
45/-45 3.3 2.7 3-2 210 160 240
(22.8) (18.6) (22.1)
(0/45 /90/-45)5| 100 9.9 9-8 130 75 120
(69.0) (68.3) (67.6)

resonant dwell technique was used. In this technique, the specimen is set into resonance
with an electromagnetic shaker. The base acceleration and the strain on the surface
measured by a foil resistance strain gage were used as inputs to an osciiloscope. The
damping was then determined from the Lissajous patterns on the oscilloscope trace. To
ensure that losses that were measured by the experimental procedure were from the
specimen and not the result of the experimental setup, Gibson and Plunkett (30) first used
2024 T-351 aluminum as a calibration specimen and then compared their result to the
theoretical prediction of the damping using the Zener thermoelastic theory (26). According

to this theory, the loss factor for a beam vibrating in flexure is given by

wt

(1+ (1)2 ‘tz) 6)

where a is the coefficient of thermal expansion, E the Young's modulus, T the absolute

temperature, C the heat capacity, w the angular frequency, and 7 the relaxation time for heat
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flow across a beam of rectangular cross section. The value of T is determined as

7{2K )

where h is the beam thickness, and K is the thermal conductivity of the beam material.

The specimens were tested in the double cantilever beam configuration, clamped at its
center to a vibration table. The vibration amplitude was controlled by varying the amplitude
of vibration of the table. The resonant frequency of the specimens was varied by
removing material from the ends of the specimens after results were obtained for the
particular frequency. The difference in the damping loss factor between the experimental
results and the theoretical predictions was less than 5% for aluminum, indicating that the
expenincital setup previded an accuraie measure of the maicnial 10ss facior. Resulis {or ihic
vanation with amplitude for the aluminum calibration sample showed that, under a vacuum

of 1 mm Hg, the loss factor did not vary with amplitude. However, at atmospheric

pressure, as the amplitude of vibration increased, the loss factor also increased.

For the cross-ply E-glass reinforced epoxy composite samples (3-M Scotchply),
Gibson and Plunkett (30) show that initial increases in the amplitude ~f - ** -ation had little
effect on the resultant material damping. As the amplitude of vibration increased to the
point where permanent degradation occurred in the material, the damping loss factor
showed a permanent increase. This result matches the work of Adams and Bacon (19)

who showed that as damage in the matenal increases, damping also increases. When the

amplitude of vibration was kept below the level at which permanent damage occurred,
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damping increased as the frequency increased. The magnitude of the increase was
approximately a factor of 2 from a value of 25x10 at a frequency of approximately 38 Hz
to a value of 42x10+ at 4 frequency of approximately 450 Hz. This result conflicts with
the earlier results of Schultz and Tsai (17), who showed that initial increases in frequency
caused a decrease in the damping loss factor of beams in the quasi-isotropic configuration.
Since the experimental apparatus in the work of Gibson and Plunkett (30) was carefully
evaluated to insure that measurements of the damping obtained would be of the material and
not the apparatus, it is assumed that the results of Schultz and Tsai (17) may have been a
function of the experimental apparatus and that the results of Gibson and Plunkett (30) are
more accurate. If this is correct, this would indicate that if one is concerned with
determining the damping experienced with a particular structure, then the measurement of
the damping from the first mode of vibration should result in an expected lower bound.

This assumption, however, needs further validation.

Pulgrano and Miner (31) conducted an experimental program to determine the loss
factor of Kevlar, glass, and graphite composites with unidirectional and fabric
configurations. In addition, the effect of resin was investigated by fabricating specimens
using the above fibers with epoxy, polyzster, and vinylester resin systems. These authors
tested the samples in the double cantilever beam configuration. They determined the loss

factor of the specimens using the logarithmic decay method.

The results from the investigation, given in Table 5, indicate thai the Kevlar

composite exhibited the highest loss factor of the thre< fiber systems tested. In addition,

the loss factor for the Keviar composite in both the unidirectional and fabric configurations




47

Table 5: Damping loss factor determination of graphite, Kevlar and glass composites in the
double cantilever beam configuration using the log decrement technique with an initial
maximum bending stress of 1000 psi. (after Pulgrano and Miner (30)).

Matenal Configuration | Frequency Loss Factor
(Hz) (x 104)
Kevlar 49/Epon 826 Unidirectuonal 87 130
Epoxy 597 260
Kevlar 49/Epon 826 Fabric 50 140
Epoxy Fabric 340 160
-Glass/Epon 826 Epoxy | Unidirectionial 65 13
438 28
E-Glass/Epon 826 Epoxy Fabric 4] 46
Fabric 340 59
AS Graphite/Epon 826 | Unidirectional 109 13
Epoxy
AS Graphite/Epon 826 Fabric 33 33
Epoxy Fabric 353 43
Kevlar 49 + AS Graphite Fabric 49 110
Epon 826 Epoxy Fabric 328 120
Kevlar 49/Polyester Fabric 51 140
Fabric 338 150
Kevlar 49/Polyester Fabric (+45°) 46 190 -
Fabric (+45°) 318 170
Kevlar 49/Vinylester Fabnic 60 140
Fabric 375 240
Kevlar 49/Vinylester Fabric (+45°) 52 160
Fabric (+45°) 334 150

were approximately equivaient. This result is interesting from tv-o aspects. First, the
fabric composite has a much lower modulus than the unidirectional composite,
approximately 56% lower for the same fiber volume fraction. The fabric composite (
samples fabricated were thicker than the unidirectional samples, as given by the number of

plies of material used in both cases, although the measured thicknesses were not

specifically given. Although the samples were subjected to the same initial outer fiber
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stress, the authors did not report whether the initial amplitude of vibration was the same in
both cases. Aerodynamic damping may therefore have been a larger contributing factor in
one of the configurations. Second, in the fabric configuration, to achieve the same outer
ply stress, the stress distribution in the fibers and resin wili be different than in the
unidirectional material. In addition, the amount of material available to dissipate the energy
is greater in the fabric specimen than in the unidirectional specimen. In regard to the effect
of resin on the loss factor for Kevlar fiber composites, the results of Pulgrano and Miner
(31) would indicate thai vinylester, polyester and epoxy have loss factor charactenstics thai

differ little in the composite configuration.

Shimizu (32) conducted an experimental program to determine the effect of fiber
volume fraction, quantity of flexibilizer, effect of foam matrix, and ply angles of angle-ply
laminates on the damping of carbon fiber reinforced composites. He indicated that some
contradictory statements have been made regarding the damping of carbon fiber composite
materials. First, it has been reported that damping in these materials is due mainly to the

resin and the fiber matrix interface with little contribution from the fibers. The contribution

of the fiber resin interface to the damping in composites has been experimentally proven

since the experimentally determined damping loss factor has been shown to be several
times larger than the rule of mixtures prediction. This shows that the interface has a
significant contribution to the damping of the composite. If, however, one considers the
temperature and frequency dependence of the composite, one can see that the damping of
the carbon fiber composite tollows that which is expected of the matrix [Adams and Bacon
(33) and Yoshida {34)]. This indicates that the resin properties, not the interface, are the
dominant factor in determining the vibration damping as a function of frequency and

tempe-ature. Shimizu (32) reported that he could find no satisfying explanation as to why
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there is no apparent temperature and frequency dependence on the fiber resin interface.

Shimizu (32) used high tensile strength carbon fiber made by Toray Corp. called
" Torayca T-300." Measurements of the damping loss factor were obtained using a Bruel
and Kjaer type complex modulus apparatus. The loss factor was determined using the half
power bandwidth method that has been previously described. In this technique, using this
equ.pment, the value of the damping loss tactor depends on the amplitude of vibration,
making this experimental procedure applicable for small amplitude vibrations only. The

specimens were tested 1n flexure in a cantilever beam configuration.

Shimizu (32) showed that adding a flexibilizer to the matrix increases the damping
loss facior of the systems. With the addition of 25 purts of flexibilizer, the loss factor
increased by as much as a factor of four for a (45/-45) laminate to as little as a factor of two
for the 0 degree laminate. The damping loss factor for the resin itsclf also increased by
approximately a factor of four when tested without the addition of fibers. The experimental
values for the loss factor of the flexibilized resin 1s much higher than that predicted using
the modified rule of muxtures approach by Hashin (35), the details of which are discussed

later.

Shimizu (32) showed that by modifying the Hashin equation, the theoretical
predictions could be made to provide an excellent fit to ihe experimental data. The
necessary change was use oi a different value of the resin’s storage modulus in the Hashin

equaucn (35)
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n= L
- EV
“_[ Vi ]
E (1=V) -

where 1 is the flexural loss factor, Ny is the loss factor of the matrix, Erand E, are the real
parts of the complex modulus of the fiber and resin respectively aid Vi is the fiber volume
fraction. Shimizu (32) indicated that the siorage modulus of the matrix in the composite s
larger than that of the matrix alone due to the restriction provided by the fibers to the
movement of the molecular chains of the resin. In this work Shimizu (32) showed the
storage modulus of the matrix in the composite configuration to be 16 times that of the

matrix itself.

Shimizu (32) tested the effect of foaming the matrix on the damping of the composite.
Increasing the volume of the composite by as much as 50% had the eifect of increasing the
damping loss factor only by about a factor of two. This type of enhancement scheme to
improve the damping of structural compaosites is therefore not a viable one. In additon,
there is a vaniation in the resonant frequencies of these systems, which may also have

atfected the damping results.

For each of the angle ply configurations tested, the loss factor as a function of
frequency had 2 minimum between 100 and 10000 Hz. The graph of loss factor vs.
frequency for each angle ply orientation was concave up, with an initial decrease in loss
factor to a minimum, followed by an increase as the frequency was increased. This result

appears to support the earlier work of Schuli. and Tsai (17) and to contradict the work of

Gibson and Plunket: (30). What is probably cccurring here is that the flexibilizer and
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foams that are being used exhibit maximum damping at different frequencies as was |
previously discussed by Kuitze and Mechel (12). This 1nay be the result of a variation in
the fiber/matrix interface characteristics, as well as the frequency effect of the loss factor of :
these additives. This therefore shows that if various constituents are added to the

composite, the effect of frequency on damiping must be experimentally investigated to

determine the frequency dependence on the loss factor of the particular system. The

angle-ply irminates can be listed in order of decreasing loss factor in the following manner:

+45> +60 > +75 > 90 > +30 > £15 > +0. Also, the damping loss factor increases

approximately eightfold from the 0 to the45. The result of the maximum in the loss factor

occurring at the 45 degree orientation again matches the results of other previously

mentioned investigators.

Plunkett (36) has investigated the effect of damage on the damping loss factor of +~
cross-ply composites. The type of damage used i the investigation was microcracks in ihe 8
transverse plies of the cross-ply composite. Many investigators have shown that the matrix
material in a composite with this configuration will crack under a combination of residual
and applied stresses, so that such cracks are a common defect that is easily created (37-40).
In addition, Adams and Bacon (19) have shown that the presence of cracks in the
composite material increases the damping loss factor of the material. Plunkett (36) used a
Sl-layer cross-ply Scotchply composite to investigate the effect of strain amplitude, and
therefore the transverse crack density, on the damping loss factor of the composite material.
The specimen was tested in the double cantilever beam configuration. As the amplitude of
vibration was increased, an increase in the damping was observed corresponding to the

development of permanent damage in the material. The crack density was easily correlated

with the loss factor. Plunkett (36) also showed that afier a particular level of damage
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comrespending to the strain level of 2%, there was nro increase in the loss factor for the
system. This damage level corresponds to the minimura spacing of the cracks in the
transverse plies of the cross-ply composite. The increase in the damping loss factor from
the undamaged to the damaged specimen having the minimum crack spacing was
approximately a factor of 3. Although he measured the increase ir. damping
experimentally, Plunkett (36) indicated that there is no physical mechanism to explain why

the magnitude of the dissipation is so large.

Macander and Crane (5) conducted an experimental program to obtain infortnation on
the vibration damping of advanced composite systems using monolithic composite beams.
This testing differed from that described previously by the size of the beams tested. In this
study, the beam thicknesses ranged from 1.25 to 1.94 in. (31.8 to 49.2 mm),
approximateiy an order of magnitude greaier than beanms used 1 i€ oilier studies
previously discussed. The beams were approximately 39.625 x 4.375 in.

(100.6 x 11.1 cm) in length and width, respectively.

The experimental technique used in this investigation was also different from the
other techniques previously mentioned. Here, the beams were excited with an impulse.
The rate at which the excitation acceleration decays is a measure of the aamping of the
structure. The vibration of the structure can be approximated by a decaying sinusoid. The
damping is then related to the time constant of vibradon decay. When the specimen is set

into vibration, the resulting mode has associated with it a particular reverberation time. The

reverberation time is the time required for the vibratior of the structure at a particular

frequency to reach one thousandth of some initial value, i.e., 60 dB referred to some inital
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value. The loss factor is then determined as being inversely proportional to this measured
time at the particular frequency. Specifically, the decaying filtered electronic signal of the
response of the structure at a particular modal frequency is compared with a signal whose

reverberation time is known, thus determining the reverberation time of the specimen. 3 '

The experimental investigation of Macander and Crane (5) was designed to determine
effect of fiber orientation, fiber type and material hybridization on the loss factor of thick
[greater than 1.5 in. (38 mm)) composite beams. The four configurations tested were 1) a
graphite/epoxy beam with fiber orientation (0/45/-45),,s7, 2) @ Kevlar/epoxy beam with
fiber orientation (0/90),,47, 3) a graphite/glass/graphite epoxy beam with the graphite
layers having fiber orientations of ((¢/90)4, and the glass/epoxy having fiber orientation
(0/90), 0871, and 4) a hybridization of Kevlar/graphite/Kevlar epoxy with the Kevlar layers
having fibcr oricntation of (0),,1 and the graphitc/cpoxy having fiber oricntations of
(0/45/-45),007. In addition to the composite beams, a brass beam 1.5 in. (38.1 mm) thick
was also tested to provide a reference for comparison with the composite results, since it
was unknown if a size effect on the loss factor would be prevalent. The beams were
constructed using the above combination of materials so that they would have the same

bending stiffness as a 1.5 in. (38.1 mm) thick brass beam.

The results, given in Figure &, indicate that all of the composite configurations tested
have a loss factor that is at least an order of magnitude greater than the brass beam over the
frequency range of 200 to 20000 Hz. The loss factor for the graphite beam is in the range
of 20x10°4 16 100x10-4 and is comparable to the graphite/glass/graphite hybrid beam.

These values are similar to those founu i1 the literature. The graphite/Kevlar/ graphite
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Figure 8 Cornparison of damping loss factors for thick section composite and brass beams
with nominal dimensions 39 x 4 in {99 x 10 ¢m), graphite/epoxy 1.46 in (37mm)
thick (gr), graphite/giass/graphite/epoxy 1.93 in (49 mm) thick (ge/gl/gr),
Kevlar/epoxy 1.26 (32 mm) thick (K), Kevlar/graphite/Kevlar/epoxy 1.26 in (32
mm) thick (K/gr/K), and brass 2.01 in (51 mm) thick (br) 1ested in flexure
(after Macander and Crane (5)).
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hybrid beam had a less factor that was slightly greater than the previous two beams with a
loss factor ranging from 70x10-4 to 230x104. The Kevlar beam had the highest loss factor
with minimal variance over the frequency range tested; its loss factor ranged from 120x10-4 2
t0 230x104. 1t should be noted that the brass beam results were approximately an order of

magnitude lower than results reported for steel and aluminum beams.

The results of this testing showed no specific trends in regard to the effect ¢f
frequency on the loss factor, in contrast to the earlier results of Schultz and Tsai (13) which
indicated that the loss factor increased with increasing frequency in a continuous manner.
The results shown in Figure 8 show a general trend of increased loss factor with increasing
frequency, but not in the same smooth centinuous manner. One possible explanation for
this is that various modes of vibration were investigated as opposed to utilizing the first

resonant frequency only.

Gibson and coworkers (41) have developed a new technique for testing the vibration
damping characteristics of composite systems. The improvements in this technique are a -
result of the improved electronic systems available for data acquisition. In addition,
measurements of displacement can be improved by replacing the previously used strain
gages with a noncontacting proximity transducer. The apparatus used by Gibson and
coworkers (41) was the Kaman KD-2310-3U eddy current displacement measurement
system. This apparatus was used to measure the resonant amplitude ratio for the
determination of the losc factor. it was shown earlier that the damping of a beam can be

determined by measuring the base and tip displacement amplitudes when the beam is

subjected to vibrations at its fundamental frequency in a double cantilever beam %




configuraton. An analysis was presented where the damping loss factor is derived from
the predicted tip displacement of the beam. This technique was used in previously
described investigations. The problem with thic experimental technique is that the
monitoring probe cannot be placed at the tip of the beam due to physical constraints. An
analytical solution was derived by Yau (42) where the displacement of the beam at any

location can be predicted. The r2sults of the analysis give the loss factor in flexure as

G 9 Xpa)
¢d(L) of a(Xy) ©)

where C; ,and ¢, are given by

4 (cos AL + coshA, L)

Ce= AL (sin AL *cosh AL — cosAL. * sinhAL

(10)

@, (x) = coshA x - cosh x - G (siahA X — sinA x) (11)

B~

[ pael)
T k El / (12)

sinA,LL *coshA L + cosA,L # sinhA L.
O = sind 1. + sinhA L

(13)
an ! = specimen length

angular resonant freauency of the rth mode

L
W,

A cross sectiona: area of heam

I = arca moment of 1nertia of speciren Cross section
p = density of the beam

X = distance 2long the beam from tne base

X

o = locatior .7 -train gages

a(X,)  =base acceleravion amplitude of beam
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a(X,) =displacement amplitude at location of probe

All of the above values are measured in the experimental apparatus previousiy described.

To use the eddy current probe for the nonconductive composite specimens, aluminum
foil targets had to be bonded to the ends of the specimen. These targets constitute only
0.08% of the total specimen weight and therefore add only minimally to specimen
damping. The previously used accelerometers could substantially affect the measured
damping by adding weight tc the specimen at a specific location. The accelerometer would
also affect the mode shape of the composite beam, thereby further complicating the
measurement of the composite damping loss factor. An alternative technique, which does
not add to the weight of the specimen, is use of an electro-optic follower. The cost of this

equipment, however, 8 well in cxcess of the cost of the ¢ddy curreit apparaius.
& et o J I

The specimens were clamped using square aluminum clamping blocks instead of
epoxy blocks molded onto the specimen. These removable aluminum blocks were
positioned using an alignment pin for centering the specimen. The amplitude of the input
oscillation was determined using an ac-dc cenverter instead of the conventional
oscilloscope. With an oscilloscope, the amplitudes are scaled from the acceleration
Lissajous patterns. The ac-dc converter has the advantage of being automated, which
reduces analysis time and errors in the measurement of the input amplitude caused by errors

in measuring the Lissajous patterns of the oscilloscope traces.

Gibson and coworkers (41) present an error analysis of the new and eld techniques.
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The new technique corrects for the displacement of the probe at its actual location instead of

assuming that the displacement measured is at the tip, reducing errors associated with

locating the probe at a specific distance from the specimnen tip and ther assuming that the

probe is located near a nodal point of the displacement. Their results then showed that the

new technique is less susceptible to measurement errors for the calculation of the Joss factor -
than the original technique. They also found that the results using the aluminum blocks

more closely matched the damping provided by the specimen itself. This was determined

by testing the material first with the aluminum blocks, then replacing the aluminum block

with a polyester shoulder and repeating the test. Uring the polyester shoulder resulted in

higher damping loss factors than when the aluminum blocks were used, indicating that the

polyester blocks provide additicnal damping to the specimen.

Sheen (43) presented resuits on the damping of composite materials in a gravity-free
environment. He reported that previous research has revealed that many material physical
characteristics affect the damping of composites. He noted that Putter and coworkers (44)
showed that temperature, humidity and ply orientation will affect damping. Adams and
Bacon (45) showed that fiber volume fraction affected the damping. Mohr and Cawley
(46) found that for angle-ply laminates, damping was slightly dependent on the stress and
frequency of the vibration. Sheen (43) therefore indicates that the test method for

determining the damping is critical for obtaining pertinent results.

Sheen's (43) experimental work included testing of (0)g and (90)g larninates at

various frequencies. He mounted strain gages to the center of each specimen, a nodal point

for this specific configuration, to obtain amplitude information. To vary the frequency yet
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retain the center of the specimen as a node point, each specimen was cut to shorter lengths
when a different frequency was to be tested. The damping results from this testing are
presented in Table 6. The results given in Table 6 are averages of the values obtained by
Sheen (43).

Table 6: Experimentally Determined Damping Loss Factor for Unidirectional
Graphite/Epoxy Composite Materials (after Sheen(43)).

Material Stress Damping
Orientation Frequency x 103 psi Loss Factor
(degrees) (Hz) (MPa) (x 104)
0 289.20 9.85 (67.9) 12.44
0 284.00 11.43(78.9) 10.38
0 288.20 9.51 (65.6) 12.84
0 301.10 10.62 (73.2) 10.11
0 485.84 3.85 (26.5) 12.01
0 931.50 3.12 (21.5) 9.88
0 1491.70 0.76 (5.2} 10.42
90 267.00 0.54 (3.7) 109.55
90 465.97 0.14 {1.0) 120.10
90 899.81 0.10 (8.7) 132.51
45/-45 17.95 507 (25.0) 108.33
45/-45 29.62 3.82 (26.3) 110.60 .
45/-45 54.16 1.85 (12.8) 119.52 5
45/-45 171.04 0.54 (3.7) 131.58 3
Sheen (43) used three methods to analytically determine the damping of the compasite

specimens. The first was the rule of mixtures approach, where the damping of the

composite is given by

N=ViN+ Vi M (14)
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where Vgand V, are the volume fraction of the fibers and resin respectively, and ¢ and My,
are the damping loss factors of the fibers and resin respectively. Since the damping loss
factor for the matrix is at least an order of magnitude greater than that provided by the

fibers, the loss factor of the composite can be merely approximated as
=Vl (15)

In this case, the damping loss factor of the composite is assumed to be isotropic and not to
vary as a function of fiber orientation.

The second method Sheen (43) used was developed by Hashin (35). Here, the loss
tangent for the material was found to be proportional to the ratio of the imaginary part of the
complex modulus divided by the real part. The approximation made in this analysis is that
the fibers do not contribute to the damping of the composite, with the resuir thai ihe
imaginary part of the fiber modulus is zero. With this approximation, the damping loss

factor of the composite in the fiber direction is given as

= [ EV; ]
14| ——

where E; and E_, are the modulus of the fiber and resin, respectively.

The third analytical technique Sheen (43) used was that developed by Adams and
Bacon (45). They take into account the energy dissipation in each cycle due to shear. The

results of this analysis establish the damping loss factor as
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where L is the specimen length, w is the lateral deflection at a distance x along the beam, h

s

a7

is the specimen thickness, Ejj is the composite Young's modulus along the primary axis,

G2 is the shear modulus, and 7}, is the longitudinal shear damping loss factor.

Sheen (43) tested the effect of frequency on the composite damping. His results
convinced him that the variations in the damping loss factor observed were due solely to the
frequency. He tested the same composite specimen at various frequencies so that any
matenial characteristics which could affect the damping loss factor, such as the fiber volume
fraction, width, thickness and internal nonuniformities remained constant. The specimen's
natural frequencies were varied by cutting equal lengths from each end so that the
specimen's center would correspond to a node of the vibration. The results of the testing
showed that there was little change in the damping loss factor in the frequency range of 300
to 1492 Hz for the () degree specimens. These results are shown in Table 6. For the 90
degree specimens however, the damping loss factor was a function of the frequency,
increasing as the frequency of osciilation increased. The same results apply to the (45/-45)
specimens. These results are also shown in Table 6. Comparing the results of the
experimental program with the theories, it was shown that the Hashin model (35) for
unidirectional composites gives results consistent with the 0 and 90 degree unidirectional

laminates tested. In the analysis that was performed, the damping capacity of the resin was

approximated since this information was unavailable. The validity of the models,




therefore, still needs further verification.

Sun and coworkers (47) compared the two techniques currently used for

experimentally determining the vibration damping characteristics of composites. The first

was the forced vibration technique, where the specimen is continuously excited by an
electromagnetic shaker at random frequencies. The advantages of this technique include
easy control of the force level, the ability to control extraneous noise and nonlinearities, and
the ability to remove distortion effects. The disadvantages of this technique are that it
cannot measure the in-situ damping of actual structures and that the testing is limited to the

natural frequencies of the test specimens.

The second technique available for measuring the damping characteristics of materials
is the impulse hammer technique. In this technique, all higher modes of vibrauon are
excited simultaneously, resulting in the ability to determine the damping at any desired

frequency, a distinct advantage over the forced vibration technique.

In the impulse hammer technique, the input excitation and the response of the

structure to a given forcing function are experimentally determined. This is done by

defining H(f), called the transfer function, as the ratio of the Fourier transform of the

system output to the Fourier transform of the system input. From the graph of the

imaginary part of H(f) vs. f, a particular frequency is determined, at which the damping is

to be determined. From the graph of the real part of H(f) vs. f, the ratio of the frequency at .
which H(f) attains its first maximum f(a) to the frequency at which H(f) auains its first

minimum f(b) is obtained. The flexural damping loss factor is then determined as follows:
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This appears to be a vaniation on the half power band width technique. The use of a
nonconiact eddy current pzobe enables a more reliable m=sthod of determinasion of the
damping of the composite. The previous.y used contact probe inevitably changed the
meJal form of vibration by viitue of the cdded mass as well as the natural frequencies of
the specimen tested. Sun 2nd coworkers (47) were able to acieve results consistent v-ith
other invesdgators, a comparison of which is given in their paper. Their results are

presented in Table 7.

5 can be seen in Table 7, al! of the composite systems have a demping toss factor at
least double that of alu-.inum. Of the composite systems investigated, the g'ass/polyester
syste . as the highest damping. This high value can be atributed ‘o the high damping
“r . J by the polyester resin compared to the Fiberite 934 epoxy resin and the

1 2poxy sysiem used for tiie Owens Corning hybrid laminaie. In addidon, there
s v ] fiequency effect on loss factor for al! of the sy:tems investigaied. The values

presented in Table 7 are similar o those obtained in previous invastigations,

Haines (10) investigated the damping properiies of graphite/epoxy composites tested
in a free-.tee beam re;onance mede subjected to forced sinusoidal excitation. His
investigation was conducted to determine the etfec: of resin and fiber type on the damping

loss factor. He tesied 8 ply laminatcs in the 0, 90, and (0/£45/90), c.onfiguratiors for all
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Table 7: Comparison of the Damping Loss Factor for Aluminum, Glass/Polyester,
Graphite/Epoxy, Kevlar/Epoxy, and Hybrid Composite (after Sun and coworkers(47))

Damping
Material Laminate Mode | Frequency | Loss Factor
Configuration No. Hz x109%
Aluminum » 1 42 14.2
- 2 275 33
- 3 771 2.5
Glass/Polyester (0] 1 75 103.5
2 467 100.6
| 3 1296 71.9
Graphite/Epoxy 99,/06/901 1 43 339
2 287 40.8
3 794 39.0
Kevlar/ Epoxy (0) 1 56 420
2 354 444
3 976 32.1
Hybnd, i
Owens-Corning 10l : * 9
2 277 422
3 773 40.5

the systems considered. The specimen dimensions were 5.9 x 0.5 x 0.079 in.
(}5x 1.3 x0.2cm). Specimens were suspended on two fine taut threads at the

calculated nodes of the beam.

The resin systems tested were Narmeo 5213, Narmeo 5208 and Fiberite 934. The
latier two systems are extensively used in both composite research and production of

composite parts. Three fiber systems were also used, Celion 3000, Celion 6C00, and

GY-70, all produced by the Celanese Corp. The first two fiber systems are conventioaal,
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commercially utilized fibers having a modulus of approximately 34x108 psi (234 GPa).
The latter fiber, GY-70, is an ultrahigh modulus fiber having a tensile modulus of
approximately 74x108 psi (510 GPa), a factor of 2 higher than that of the former two
fibers. The results from the investigation are given in Table 8. By using identical fiber
systems in various matrices, Haines (4) was able to rank the resin systems in order of
increasing damping that they provide with a particular fiber system as follows: Narmco
5213, Narmco 5208, and Fiberite 934. The fibers could likewise be ranked in order of
increasing damping that they provide in a particular resin system as follows: Celion 3000,
Celion 6000 and GY-70. Since the Celion 3000 and Celion 6000 fibers are identical, with
the exception of the number of fibers in each individual tow used to manufacture the
prepreg, Haines (6) was able to determine the effect of tow size on the damping by
experimentally determining the damping of specimens using the two fibers in the same
resin systems. His finding showed that the same fiber sysiem with more fibers per tow,
i.e., the Celion 6000, provides increase. dainping over a system with fewer fibers per tow,
the Celion 3000. This seems to conmradict the earlier findings by Adams and Shert (15)
who observed that as the surface to volume ratio of the fiber is increased (i.c., as the fiber
diameter is reduced) the damping is also increased. Although the same fiber is used in both
cases, the resin dismbution within the tows and between tows is probably different. A
possible explanation is that the packing of the fibers for the Celion 6000 systern has more
matrix between the actual tews but a4 more dense packing within the tows themselves, with
the result that a larger effective surface to volume ratio results. ff this is the case, then

Haines's (10) results would support the findings of Adams and Short (18).

This work by Haines (10) also helps to identify a potentially high damping system.

This can be secn if the carlier results of Adams and Bacon (19) are used. Adams and
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Table 8: Experimentaily Determined Dumping Loss Factor for Celion 3000/5208, Celion
300075213, Celion 6000/5208, Celion 600075213, and GY 70/934 Unidirectional

Graphite/Epoxy Composites using the Free-Free Vibration Test Method(after Haines (10)).

Test Young's Damping
Matexial Direction Frequency Modulus Loss Factor

(degrees) (Hz) x106 psi (GPa) (x 10%)
C3000/5208 0 833 21.1 (145.5) 13.3
C3000/5213 0 881 19.7 (135.8) 9.7
C6000/5208 0 882 20.1 (138.6) 15.4
C6000/5213 0 909 19.2 (132.4) 10.5
GY'70/934 0 1090 41.5 (286.1) 23.6
C3000/5208 90 673 1.8 (12.4) 251.6
C3000,/5213 90 685 1.5 (10.3) 148.2
C6000/5208 90 699 1.7 (11.7) 279.7
C6000/5213 90 700 1.5 (10.3) 160.0
GY70/934 90 437 1.0 (6.9) 325.2
C3000/5208 (0/45/-45/90) 510 6.9 (47.6) 77.4
| GY70/934 (0/45/-45/90) 592 10.6 (73.1) 61.5

Bacon (19) showed that, as the system is made stiffer, the damping loss factor of the

system decreases. The GY-70/934 system tested by Haines (10) has a stiffness that is

approximately double that of the other two fiber systems investigated. The GY-70/934

system, however, had a damping loss factor that was approximately double that of the

other systems. Based on the above finding of Adams and Bacon (19), a composite system

that incorporates the Celion 6000 with the 934 resin, having a stiffness much less than the

GY-70/934, should yield a system that has superior damping to the systems shown in

Table 8.

Suarez and coworkers (48) presented an analysis of the random and impulse
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technique. The random technique is similar to the forced vibration technique mentioned , .
above, except that the specimen is excired by a random frequency response generated by
the noise source of a fast Fourier transform analyzer. The analysis still uses the transfer
function [Sun and coworkers (47)] to determine the damping via the haif power band width
meihod. In the impulse technique the specimen is excited using an impulse from a hammer X
with a force transducer attached to its head. In this mode all the frequencies of vibration are

excited simultaneously. The transfer function is again determined using the input fromn the

force transducer as the input function and the response is measured using the noncontact

cddy current probe. The loss factor for both techniques is also determined using the half

power band width technique, praviously given in equation 3. The results from the two

techniques are similar. The impulse technique allows for low amplitude vibrations, which

enables aerodynamic damping to be minimized. Obtaining low amplitude vibradons with

the random vibration technique is more difficult. The consequence of using the random

vibration technique, therefore, is that the aerodynamic damp 1g can contribute to the

measured damping of the specimen, as previously identified Lv Adams and Bacon (19).

Because of this and other consideraiions, the impulse technique is considered by Suarez

and coworkers (48) to be the easier of the two techniques to use experimentally.

The experimental results obtained using the impulse hammer technique were
consistent over a larger frequency range and successive number of tests, and were
consistent with proven theoretical models of metallic materials. With the impulse hammer
technique, by keeping the vibration amplitude to a minimum, frictional Josses at the clamp

region of the specimen are also minimized, in addition to the above mentioned minimization

of any aerodynamic damping effects.
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The resvlts of Suarez and coworkers (48) showed that the loss factor increases
slightly with increasing frequency. The frequency of test varied irom approximately 39 to
1000 Hz. 1t should also be noted that for the aluminum specimen tested, there was an

initial increase in damping loss factor to a frequency of approximately 10 Fiz followed by a

decrease in loss factor with frequency, asymptotically approaching 0 at frequencies greater .
than 1000 Hz. For the chopped glass/polyester sample, the damping loss factor ranged

from 100x104 at a frequency of approximate!y 40 Hz to a value of 120x10 at a frequency

of approximately 1575 Hz. For the graphite/epoxy samples, the damping loss factor

ranged from 25x10+ at a frequency of 50 Hz to a value of approximately 30x10 ata

frequency of approximately 950 Hz. Suarez and coworkers (48) also present results of the

damping loss factor for the epoxy material. Values were approximately 180x104 upto a

frequency of approximately 420 Hz.

Hoa and Ouellette (49) experimentally determined the damping loss factor of plain

weave Keviar 49 fabric impregnated with Narmco's 5208 epoxy resin, unidirectional

T-300 Graphite/5208 epoxy, and various hybrid combinations of these two materials. The

goal of their work was to obtain a lamirate that had twice the stiffriess of aluminun along

with twice the damping loss factor of a graphite/epoxy panel. Initially, the !oss factor of

the Kevlar fabric and the unidirectional graphite/epoxy materials were determined. Next,

various hybrid configurations were fabricated and tested to determine the resuliing loss

factor. Their results are given in Table 9. It can be seen that the maximum damping

occurred when the Kevlar/epoxy was subjected to the largest axial sress level and the

graphite/epoxy wis subjected to the largest shear stress. The specific configuration used to

meet their goal was a Kevlar/graphite/Kevlar laminate with the orientation of

[(0/90),/0,/(0/90),}1
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Table 9: Effect of Material and Laminate Configuration on the Damping Loss Factor of
Plain Weave Kevlar 49/5208 Epoxy, T-300 Graphite/5208 Epoxy and
Kevlar/Graphite/Epoxy Hybrid Composite Materials(after Hoa and Ouellette (49)).

Tnital Loss |

Material Configuration Strain | Frequency| Factor

(uinfin)| (Hz) (x 104
Kev/epoxy [0/90]sT 300 34.0 134
Kev/epoxy [+ 45]sT 300 17.1 197
Gr/epoxy {OigT 300 63.0 42
Gi/Kev/Gr/epoxy 0/+453/0,11 300 67.8 41
Gr/Kev/Gr/epoxy [02/(0/90)>/0211 300 65.6 42
Kev/Gr/Kev/epoxy [(0/90),/0+/(0/50),11 300 50.6 138
Kev/Gr/Kev/Gr/Kev/epoxy | [(0/90)/0/(0/30)0/(0/50))r | 300 34.1 119
Kev/Gr/Kev/epoxy 1(0790)2/05/(0/90)]; 300 83.3 88
Kev/Gr/Kev/epoxy (0/90)5/04/(0/50)], 300 97.1 96




Theoreticai Detennination of Damiping

There have been numerous analytical models which have been developed for
determination of the damping loss factor for composites. These approaches have attempted
to determine the damping of a lamina from a micromechanical approach, the damping of a
laminate using a macromechanical appioach, and the damping that a composite structure
would possess. Each of the individual approaches is important for the overall design of a
damped composite. FHach of the approaches ultimately builds upon damping or viscoelasuc
characteristics of the material constituents. This interrelationship is depicted in Figure 9.
An understanding of this interrelationship is manifested in the design process of comiposite
structures. From knowledge of the structural requirements of a component, a designer
chooses the appropriate fiber and matrix system, or laminae. For the determination of the
damping of the laminae, an understanding of the contributions ot the material constituents
and their combined response is necessary. These ! mina characteristics are then reqaired to
determine the damping of a laminated composiie. In addition, the stacking sequence and
ply orientation effecis must be considered in determining the damping response of a
laminated compositz. These stacking sequence and ply orientation effects are then
necessary inputs to the damping analysis of coniposite structures. Again, additional
characteristics, such as damping provided at joints, and aerocynamic and hydrodynamic
damping, must be taken into accoun: to obtain an accurate determination of the damping of

the composite structure.

Analytcal models that have been presenizd in the literature have typically attempted to

determine the damping associated with one of the three general areas discussed above. The




Micromechanical Approaches
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1. viscoelastic response of constituents
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3. fiber matrix interphase effects
4. material anomalies
S i lume fracti .
fiber volume fraction Macromechancial Approaches

A
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1. viscoelastic response of laminate
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Figure 9: Damping mechanisms of composites.
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review that follows will discuss the analytical models that have been formulated to
determine the damping of composites on the micromechanical. macromechanical and

structural ievels.

Three models that had moderate success at predicting the damping loss {actor of
various composite systems were presented earlier. These models werc the rule cf mixtures
approach (43), the mode! of Hashin (35), and the model of Adams and Bacon (45). The
modified rule of mixtures, as was introduced in the previous section gives the in-plane loss

factor of the composite as

M1 =MV (15)

where Vi, is the volume fraction of the matrix and N, is the loss factor of the resin system.

This indicates that the loss facior of the compositc is fixed once the resin system is chosen.

The model of Hashin(35) is an extension of the rule of mixtures approach. He
incorporates the fiber elastic properties in the calculation of the matenial liss factor. [n this

case the in plane loss factor is given as

Ay = Nm
n= _"—'E"\'/'——
Ll _L]
[ Ex{1-Vvp)

(16)




where Eyand Vg are the elastic modulus and volume fraction of the fibers. This would
indicate that as the stifiness of the fibers increase, the loss factor of the composite

decreases, when a particular resin system is used with identical fiber volume iractions.

A third analytical model that has been used successfully to predict the loss factor of
metals, and which may be operative for composites is the Zener Thermoelastic Theory
(26). As was previously indicated, according to this theory, the loss factor for a beam
vibrating in flexure is given by

«’ET ot

(1+ ©° 12) (6)

where @ is the coefficient of thermal expansion, E the Young's modulus, T the absolute
temperature, C the heat capacity, @ the angular frequency, and 1 the relaxation time for heat

flow across a beam of rectangular cross section. The value of 1 is determined by

— hZC.
‘t——'nz—'

~

)

where h is the beam thickness, and K is the thermal conductivity of the beam material.
This analys:s takes into account only the energy dissipation which results from thermal
currents and ignores the viscoelastic contribution that the constituents may have. This in
uself would not be recommended as an appropriate model to determine the loss factor of
composites. However, this contribution in conjunction with the Hashin model would

provide a more accurate estimate of the material damping loss factor of composites.
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Using the Zener thermoelastic theory, the loss factor as a function of material
thickness was investigated for a graphite/epoxy unidirectional composite. Literature values
for the thermal conductivity, heat capacity, and coefficient of thermal expansion were used
in equations 6 and 7. For a beam with a thickness of 0.04 in (1.02 mm), the peak value
occurs at a frequency of ~proximately 10 Hz. At frequencies greater than 100 Hz., the
calculated loss factor is less than 10 x 104, As the thickness is increased t0 0.125 in
(3.18 mm), the peak is shifted to a frequency of approximately 1 Hz. At frequencies
greater than 10z, the calculated loss factor is less than 10 x 104, As the thicknesses
increase, the frequency at which the peak value occurs is shifted to lower frequencies with
a smaller bandwidth of significant contribution. As such, the energy dissipated frorn cyclic

heat flow in composite materials is minimal at best for typical frequencies of interest.

Mallik and Ghosh (50) developed a theory concerning the damping o1 composites that
have high damping particulate inclusions incorporated into their structure. In this analysis,
they considered the inclusions to be uniformly distributed in the matrix material. They
divide the material into unit cells which are cubes of side "b," each with a spherical
inclusion at its center. They then subjected the cell 10 a tensile stress T and computed the

stress field around the inclusion.

The damping capacity was computed as the equivalent logarithmic decrement given

by

D
2W (19)

0=
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where D is the energy dissipated per cycle, and W is the maximum elastic energy duniag the
cycle. The values of D and W are computed as follows:

D:J'“. J(cf +c§+ o%—cloz— 0,03 —0301)“’2dv 20)
(

1 2 I-v
. W=ﬁ (0 +0,+03) — e (0,0, + 0203 + 0,63) a1
where E is the modulus of elasticity, v is the Poisson's ratio, and J and n are material

constants. This integration was carried out numerically.

A parametric study was carried out using various inclusions and the material
properties v = 0.3 and n = 2.5, where n is the damping index of the matrix. Although the
value of v 1s actually variable with the material, its effect on the damping capacity was
msignificant. Results indicated that rigidity 1s not attected by the inclusions, while
damping capacity is enhanced greatly. No indications were given concerning the values
used in the study and to what materials the appropriate damping capacity values would

theoretically correspond.

This work appears to support the work of Lameris and coworkers (51). In their
experimental investigation, these authors determined that adding a weight to the composite
structure at various locations could enhance the damping of the structure. The work of
Mallik and Ghosh (50) shows that, as one adds particulates to the composite, which can be
considered as the degeneration of macroscopic weights added to the exterior of the

composite, the damping is substantially enhanced. For the composite materials currently in

- use, the incorporation of a very dense, uniformly distributed particulate into the composite
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during fabrication may substantially enhance the structural damping of the system.

Kishore and coworkers (52) presented a theoretical analysis on the effect of the
bonding of the fiber to the resin on the damping of the composite system. In their analysis,
they assumed that if the bonding is poor, there is a loading above which slip will occur.
When this happens, there is a resultant dissipation of energy from friction at the interface.
By varying the coefficient of friction at the interface, the loss factor is determined from the
maximum strain energy stored during loading of the composite. The loss factor is then
calculated as

n= W
2ny (22)

where W is the cnergy dissipated during one loading cycle and U is the maximum strain

energy stored in one cycle.

From their analysis, they showed that 4 loss factor for 2 composite which is as high
as 1200x10- can be achieved. The loss factor is also a function of the applied load. No
slip occurs until the critical load is reached, resulting in a loss factor that one would
normally anticipate for a properly made composite. After this critical loading, further
increases in loading increase the loss factor of the composite up *0 a certain large amplitude. «
A maximum is reached because eventually a separation occurs within the cornposite
between the fiber and the resin, so that no frictional loss of energy is available. In general,

using this analysis, the loss factor was shown to vary between 300x 104 and 800x104,

typical of values expected for some composite materials.
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These models do not take into account the numerous factors that have been shown to
affect the damping loss factor of the composite, such as the fiber orientation and thickness,
fiber diameter and fiber volume fraction to naine but a few. In addition, the viscoelastic
characteristic of the matrix material, or the frequency effect, is also ignored. A

- comprehensive micromechanical analytical model should account for these various
microscopic aspects in determining the lamina damping characteristics of composite

materials.

Two macromechanical approaches predominate the literature, the elastic-viscoelastic
correspondence princinle and strain energy approach. These approaches are used to

determine the laminate damping loss factors.

Numerous investigators have suggesied the use of the elastic-viscoelastic
correspondence principle tor determination of the damping loss factor of
composites (53-57). This procedure utilizes as input the lamina loss factor characterstics

to determine the effective laminate loss factor.

Typically, the fibers are assumed to be elastic and the matrix is assumed to be linearly
viscoelastic. As such, the composite behaves macroscopically as a linearly viscoelastic
body. For a matenial subjected to oscillatory loading, the time varying local average

stresses and strains can be expressed as



Eaih ] X - - L AT T Tl il 4 AR . - PR - f!

i 23)

(&) =GijC (24)

Hashin (35) has developed a geaeral theory of complex moduli of viscoelastc
composites which indicates tlat the macroscopic dynamic behavior may be approximated
by classical continuum dynamics for relatively low frequencies. The composite viscoelastic
response can then be determined by replacing the phase elastic moduli with the identical

phase geomeiry by the cffective conplex moduli.

The elastic stress strain relationship for a material can be expressed as

Gi; = Qjju €x1 25)

where Qjjii is the classical stiffness tensor. Applying the elastic viscoelastic correpondence
principle to a materiai elastic behavior characterized by equation 25, the viscoelastic

response is then given by
* * *
G;j = Qjju & (26)
A contir uous fiber composite lamina possesses orthotropic symmetry. If the material
is subjected to plane strain conditions, the number of elastic constants required to
characterize the reduced stiffness components, Q; j» glven in equation 25 reduces to three:
E;, Ep, and Gy;. Utilizing the elastic viscoelastic correpondence principle, the

corresponding components in equation 26 become -

E1*=E1'+iEl" (27)
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E,* = E, + iE," 28)
Gp* =Gy +iGyy" (29)

where E|', E;', and Gy5'are the real in-plane modulus, of storage modulus, of the
composite and E;", E,", and G1," are the imaginary part of the complex modulus, or less
modulus. The components of the stiffness matrix, Q'Uk, can be written in terms of the
complex moduli given in equations 27-29. For a general laminated plate, the components

of the reduced stiffness matrix become

. E,
Ql] = P * »
{1-V2,Vy2) (30)
. B B
127 = v T o
(1=Vy, V1) (1-Vy; Vp2) 31
. E,
Qp= S
(1-vy; vy3) (32)
Qs = Gp» (33)

To determine the viscoelastic response of a general laminated composite, tensor
transformations of the stiffness matrix is performed. These reduced stiffnesses are

obtained by multiplying the Q%; j by the direction cosines. These values are given as

Q= m’ Q;l +2m? n? [sz + 2Qge 1+ n* sz (34)

Q= Q =m0’ [Q]; + Q- 4Qge 1 + (m* +10%) Qp (35)

-sz = n4 Q;l +2m2 n2 [Q;z + 2Q;6 ]+ m4 QZ‘Z (36)
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Qe=m’n[Q1 - Q1 +mn’(Q- Q) -2mn (m*-n") Qg (37
626= m n’ [Q:: - Q;z i+ me n [Q;Z - Q;Z ]+ 2mn (m2 —n? ) Q;6 (38)

Qg =m’ n* [Q]; + Q5 —2Qee 1 + (m* + 1" ) Qg (39)

where m is the cosine of © and n is the sine of @ where © is the angle the fibers make

with the principle load direction.

The elastic response of a general laminated plate can then be defined in terms of these
reduced stiffnesses as

N
A=A +iA;= Z(Qi; +iQy") My ~hy_p)
k=1

(40)
N
Bj=Bj+iB = D@ +iQ) M2 -h2.,)
k=1 (41)
1 N
D; = Djj+iDj = 5 > @y + iQy" )b i
k=1 (42)

where h is the distance of the ply interface from the midplane of the composite laminate.

The manner in which the loss factor would be determined for a general laminated
plate would be to determine the effective complex elastic constants. Taking the ratio of the
imaginary to the real part of the effective modulus will result in the effective loss factor for

the particular system. For example, the effective loss factor in tension could be estimated

by using the relation for the effective longitudinal modulus,
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2
_AnAp-Ap 1

x hAy - h A;l

(43)
and through the substiwtion of the complex quantities, the resulting loss factor can be
determined using equation 5 as

" -1
Ex A 11
Nxy=—"= 1
E, Ap (44)

In theory, the utilization of the elastic viscoelastic correspondence principle will allow
for the determination of the damping loss factor of any general laminated plate of composite
materials, including hybrid systems. An underlying assumption in the above development
1s ihat the marrix properties, and therefore the composite properties, are temperature and
frequency dependent. As such, this frequency dependence should be carried through the
analysis, yet is typically ignored in the literature. In addition, another major limitation to
the theory is a lack of experimental information on the damping loss facior of the various

composite systems which can be implemented into the above analysis.

The other macromechanics approach to determine the damping loss factor of a general

laminated structure is through the computation of the strain energies. Many investigators

have used this approach. A discussion of two variations of this technique are given below.

Plunkett (36) presents an analysis for predicting the damping loss factor of an

isotropic homogeneous material. For gencral dynamic deformation, he states that the cnly
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way to consistently define damping is to define it for the deformation state, which is exactly

cyclic. For one cycle, the energy dissipation is given by

t+T dEij([)

AW (x) :J- 'tiJ-(x,t) dt
t

where T, is the shear stress as a function of position and time and € is the shear strain.

This formulation determines the change in strain energy of the system over one cycle of
vibration. Any losses due to the various damping mechanisms in the material will be
included in the value of the strain energy. Since the deformation is exactly cyclic, the

following stress relation holds:

Tij(t +T,x)= tij(t' X) (46)

The maximum strain energy of the system is determined to be

Ell‘\l\.
T

(47)

Plunkett (36) then assumes that the strains ure sinusoidal. Also, by expanding the

stresses into a Fourier series, only the fundumental component of the stress contributes to

the energy dissipation over one cycle, AW. Using this Fourier expansion and the elastic

properties of the material, the stresses, even for an anisotropic material, can be written as

1y = G € (48)

where C'ijk, is the complex stiffness tensor. The local energy dissipation and the

maximum swrain energy can then be written as
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AW = TICijkl Eij €11 (49)

1 .
U= 3 Ciji & & (50)

where C'jq and C"jjq are the real and complex parts of the complex modulus. Through
further reductions, Plunkett (36) arrives at an analytical determination of the material's luss

factor as

AW
ns-__m 1)

In this analysis, then, accurate determination of the complex modulus is required for
the prediction of the damping loss factor. In composite matenals, values of the loss

modulus are not readily available for either the lamina or laminate.

Although the procedure is capable of analytically determining the loss factor,
Plunkett (36) indicates that the vaiues of the energy dissipatior and the maximum strain
erergy at the particular location are not experimentally measurable quantities. It is
necessary to integrate these values over the volume of the material, thus determining the
system damping loss factor. This is the experimental quantity that is determined by the
various test methods. Plunkett (36) points out that as a result, the loss factor measured in
any experimental system determines the system damping loss factor and not the material

damping loss factor.

Plunkett (36) indicates that if the damping is smail enough, less than 0.1, then the out

of phase stress is sufficiently small and therefore does not aifect the in-phase vibratory
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strain. Because this causes the mode shapes to remain the same, the nonlinear damping can
be handled in the classical way, using equivalent damping coefficients, as long as the

interaction is properly accountea for.

Plunkett (36) also compares the analytical predictions with experimental results of
other investigators. He concludes that almost all of the energy dissipation in the composite
materials tested is due to the strain field in the organic matrix materials, with some

contribution by the fibers in the fiber direction.

Alam and Asnani (58) provide a more rigorous approach to the determination of the
strain energy for a general laminated composite material. They point out that, currently,
composites are dynamically analyzed by replacing the laminated plate structural
characteristics with that of a homogeneous orthotropic material. Because of this, the true
deformation of the individual layers may not be accurately represented. To account for
this, Alam and Asnani (58) consider the elastic properties of each layer separately. In their
analysis, they also consider the extension, bending, in-plane shear, and transverse shear

deformations in each layer of the laminate.

They first determine the displacement at a point z from the mid plane of the it layer

along the x and y directions respectively as

Z;

u,
b

1
= s+ u)+ I"_(Ui+1 - U .
- ! (52)
1 Z
(Vier + vy + = (Vi — V)

ti (53) .

vl‘i
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where u;, v;, u;,,, and v;,, are the displacements of the two surfaces of the i layer along
the x and y directions respectively, and t; is the thickness of the ith layer. The strains are
computed in the classical manner as the derivatives of the displacements. The resulting
stresses are then determined from tiwe strains by using the stiffness matrix, which has

components of Q“, le, sz, QG(,, Q44» and Q55-

The strain energy of the system is then determined by summing the contributions of

each layer to the strain energy, which is given by

AN

-

Mz

(Onni€xnit Oyy.ifyyit TayiVayit Taa,i€xait Tyzifys,i)dZidxdy
(54)

'\’l- 0|
NI —

along the x and y directions respectively.

The kinetic energy of the plate is then determined from the displacements by the

following equation
2 2 - - 292 0+ 29
(Y +u»1) (Vi""’m) (Ui—um) G (Vi _Vi+l) 3 }
T‘ZJ J 2p,,{w +( 2 T M T T ) ey

where the - 1s the time derivative.

The work done by the external excitation f(x,y)sin(wt) is the force times the

displacement, given by
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be a
A% =j J w f(x,y) sin ot dxdy
0 Jo (56)

where the integration is carried out over the plane of the material.

The strain energy and the kinetic energy are next computed from the displacements
and the normal strecs transformations. They then utilize the Reissner Vanational Theorem,
which uses the kinetic and strain energies, and the work done by the system, and apply
Hamilton's principle. The minimization process yields the governing equations of smotion.
From the governing equations and the boundary conditions, which must specify the initial
displacement and velocity, the displacements are obtained as a functions of time and . '_ :

position.

In the series solution for the displucements that satisty the boundary conditions, the - -
reai moduli are replaced by the complex moduli. The system is then solved as a cocmplex
eigenvalue problem. The real part of the complex eigenvalue is the resonant frequency
parameter. The ratio of the imaginary to the real part of the complex eigenvalue is the

system loss factor. e

Again, the utility of this theory is limited due to the lack of experimental values for the
complex modulus for composites. This theory also fails to take into consideration the
frequency dependence of the material. Estimations were made on the loss factor of various
fibcr orientations using the above analysis. They assumed that the loss factor of the fiber

was zero, while the loss factor of the matrix was assumed 1o be 0.5. Alam and Asnani(58)

acknowledge that the material has a frequency, temperature and strain dependence which is -
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ignored in their analysis. The calculaied loss factor results that were obtained for certain
orientations were equal to the assumed loss factor of the resin. In practice, this level
should never be approached, bascd on the volume fraction of the resin and configurations
that are utilized. It is not known if the utilization of more appropriate values of the loss
factor for the various orientations would result in more appropriate values for the various
orientations. What is evident from this analytical effort is the need for appropriate

experimental information which can be utilized in the model.

Two other results of the work of Alam and Asnani (58) are that the damping loss
factor decreases with increasing thickness of a cross-ply material and that the damping loss
factor increases with decreasing values of E|/E;;. The first finding is consistent with the

earlier work of Clary (10).

Structural Models

Approaches that have been used 1o determine the loss factor of composite structures
have been te utilize finite element models to determine the energy dissipated and strain
energy stored in the system. The following will present some of the variations that have

been used for damping determination ir composites.

Brockman(59) provides a summary of the finite element solution methodologies for

determination of the damping loss factor of composites. Commun to these techniques are

the following assumptions: 1. displacements and strains are infinitesimal; 2. the material
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behavior is linear and viscoelastic; 3. the stcady-state viscoelastic behavior of the matenials
can be characterized by three parameters, namely the bulk modulus, shear modulus, and

damping cocfticient; 4. the applied loading varies sinusoidally with timie.

With these assumptions, the strain displacement equations are given as

1(du; duy,
eij = i(a—xj + 5—)—(— )

! 67
the momentum and moment of momentum equations are
do;; :
5 tobi=py .
j (58)
Gi; = 0ji (59)
and the displacement and force boundary conditions are
Ui = Ell on CVu (60)
Gji ‘nj = -li on an (61)

The assumption is made that cach component of displacement varies sinusoidally with
time at a given frequency, for both the free vibration and forced vibration at a single

frequency. Thus, ui can be expressed in the product form

w; (3.0 = Uilxg) €' (62)
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‘The material model results in a linear relationship between stress and strain of the

form

0; = Gijx Exl 63)
where C is the tensor for an isotropic material. The bulk and shear modulus are then

assumed to be complex-valued. They are described as
G=G(+n) (64)

K=K((1+n) (65)

In the above relationship, the damping loss facior that is used for both the shear and
the bulk modulus is assumed to be the sume. This use of a single loss factor by the finite
element techniques is their major limitation for calculation of the composite damping loss
factor. Although this limitation is acknowledged by most investigators, it is the result of
the Iimitation of the source code. In addition, there are no provisions available to

incorporate the frequency dependence of the material.

In addition, the strains and stresses are assumed to be complex-valued, with the real
componen. denoting the in-phase contmbution and the imaginary component denoting the

out of phase component of the stress and strain.

A system of simultaneous equations, obtained from the finite element discretization, is then

solved. These equations are of the form
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(IK] - w2[M)) {U} = (F) (66)

where

[K] = system stiffness matrix (complex valued)
{M] = system mass matrix (real valued) -
{U} = nodal displacemcnts (complex valued)
{F} = nodal force amplitude (usually real valued)
® = frequency of vibration

The solution techniques that are utilized to solve this system of equations are the
complex eigenvalue solution, the frequency response solution, and the real eigenvalue
solution. The complex eigenvalue solution solves for the frequency and mode shape by
considering the unforced motion of the system, using the ratio of energy dissipated to
energy stored for system loss facior determination. The trequency response srlution
solves the system of complex-valued linear equations, thereby obtaining the corresponding
displacement shapes and plotting the resulting amplitude and phase quantities versus the
forcing function at several frequencies, followed by the calculation of the energy dissipated
and energy stored. The real eigenvalue soluiion solves the real eigenvalue problem for
frequency and mode shape, assuming the systern stiffness matrix to be real. By substitution

of the damping loss factor of the material, the strain energy stored and dissipated by the

system: is determined.

Bert (60) presents a survey on the vibration damping of composite materials. He

presents some of the analytical models that have been used to predict damping in
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composites. Bert (60) notes that, to his knowledge, no analytical models available can
predict the damping loss factor i composites in which the fibers are anisotropic. Graphite,
boron and Kevlar fibers are anisotropic. Thus, according to Bert, the only composite
system that presently cair be modeled is one which utilizes glass fibers. Furthermore, the
models that are available assume that the fibers are perfectly bonded to the marrix and that

there is no interphase region around the fiber.

Bert (60) concludes that for designers concemned with the damping of composite
materials, only trends are available fcr design considerations. Bert (60) says that to
maximize the damping loss factor in a composite system, the designer must incorporate the
effect of the fiber and matrix materiai, the volume fractions, orientations, and laminate
arrangements into a model, although no currently available mode! incorporates these

factors,

Two experimental techniques have predominated in the testing of the damping loss
factor for composites: the forced vibration iechnique and the free vibration technique. Both

techniques tes: the material in flexure. The impulse hammer method using the

noncontacting eddy current probe appears io be the currently accepted premiere technique

for experimentally determining the damping loss factor of composite materials.

The damping loss factor for composite materials has been shown experimentally to be

dependent on the fiber angle, specimen thickness, the resin system used, the frequency of
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test, the fiber volume fraction, fiber diameter, beam stiffness, state of damage in the
material, and, in soine cases, on the stress amplitude. A fiber angle of 45 degrees appears
to maximize the damping loss factor with the other fiber orientations ranked as follows:

45 >60>75>90>30> 15> 0. For the Kevlar/epoxy composite, however, the damping
loss factor in the 0 and 90 degree directions were approximately equivalent. Polyester resin .
has a higher loss factor than epoxy. These resins can be ranked in order of decreasing
damping loss factor as follows: Polyester > Fiberite 934 > Narmco 5208 > Narmco 5213.
Ii should be noted here that the Fiberite 934 and Narmco 5208 are both high temperature
curing epoxy, 350° F, with very similar mechanical properties. The type of fiber used also
affects the damping loss factor. This can be due to the fiber's conwribution to the damping
or to the difference in the interface properties of the fiber and resin systems investigated.
Increasing the fiber volume fraction, the fiber diameter, the specimen thickness, and the
beam stiffness reduces the damping loss factor. In most cases, increasing the amount of
damage in the material, the stress amplitude of test, or the frequency of test increases the
damping loss factor. The maximum damping loss factor for glass/epoxy, graphite/epoxy,

Kevlar/epoxy and glass polyester tested at 45 degrees are 110x104, 325x10+4, 190x104,

and 103x10- repectively. These results have to be viewed with caution since in no

investigat on was it indicated that the panels were inspected for quality. Since damage in
the material will enhance the damping loss factor of the composite, it is unknown whether
the indicated damping loss factor was the result of the panticular characteristics of the

material or the result of material quality.

The results that are summarized apbove indicare that there are numerous material
constituent characteristics that affect the loss fuctor of the composite material. In addition,

these investigations have not appropriaitely characterized the frequency denendence of this
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viscoelastic material.

The theoretical models currently available to predict the damping loss factor for
composites are inadequate for design purposes. Any micromechanical approach for
determining the loss factor of composite laminae which could incorporate the material
characteristics that have been shown to affect the loss factor and which could be
experimentally validated would be virtually impossible. The macroscopic approaches do
not account for the frequency dependence, i.e., the viscoelastic characteristic, of the
material. In addition, there does not exist an adequate characterization of the material loss
factor which could be utilized as input to these models. The structural approaches do not
account for either the frequency dependence of the loss factor or the anisotropic variation in

loss factor. This latter limitation may be the direct result of lack of appropriate input.




Chapter 3

ANALYTICAL MODEL DEVELOPMENT

There have been numerous approaches undertaken to determine the damping of
composites. These approaches can be grouped intc micromechanical, macromechanical
and structural approaches. The most fundamental approach would derive the damping
response of composites from the material constituents in an analogous manner to that in
which the elastic behavior of composites is determined. This approach would provide the
most utility. However, in addition to the characteristics of the imaterial constituents, their
interaction and physical characieristics have also been shown to affect their damping
response. The incorporation of these effects as well as the necessary experimental

validation of a micromechanical approach would be difficult if not virtually impessible.

In the structural analysis of composites, the fundamental building block is the
composite lamina. The elastic response of the lamina incorporates the elastic response of
the material constituents as well as their interacticn and physical characteristics. Because of

this, most composite design utilizes material characteristics of the lamina in lieu of the

characteristics of the individual constituents. In addition, the lamina characteristics can be

readily determined through numerous standardized test procednires.
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In a similar vein, the determination of the damping of a composite from knowledge of

the composite laminae damping characteristics will automatically incorporate the material

constituent characteristics, €.g., the fiber diameter, fiber matrix interface, fiber and matrix

loss factor, and fiber volume fraction. With knowledge of the anisotropic damping loss

factors of the iaminae, the damping response of a general laminated composite could then

be determined. In addition, experimental techniques have been developed which can

determine the laminae material loss factors. Therefore, one should be able to

experimentally determine the material characteristics required for such a madel. For these

reasons, the approach that will be developed in this dissertation is 2 macromechanical

approach.

There have been two approaches previously undertaken to model the
macromechanical damping response of composites, the elastic viscoelastic correspondence
principle and the strain energy approach. Of these two models, the elastic viscoelastic
correspondence principle is the most udlitarian since fundamental parametric studies can be
readily uvndertaken. This is the result of the model's ability to determine the fully populated
complex reduced elastic stiffness matrices from the in-plane material complex elastic
properties. As the model currently appears in the literature, there is one major material

characteristic missing: the viscoelastic characteristic of the composite.

The polymer matrix material utilized in the composites materials discussed herein
possesses temperature and frequency dependent damp'ng loss factors, as illustrated in
Figure 1. Because of this, the composite material should also exhibit a frequency and

temperature dependent loss factor. In fact, in the discussion of the elastic viscoelastic
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correspondence principle, many of the authors refer to this fact, yet ormit its effect from the

subsequent analysis. To provide a2 more accurate description of the damping of

composites, their frequency dependence should be incorporated. The analytical model that .

will be developed in this dissertation wiil be a modification of the elastic viscoelastic

correspondence principle to incorporate the frequency dependent anisotropic loss factor of

the laminae for the analytical determination of the damping loss factor of a general

laminated composite.

Macromechanical Model Development

The development of the elastic viscoelastic correspondence principle for composites

has been given in Chapter 2. A detailed discussion of the fevelopment of this model for

use with laminated plate theory will be presented. This is necessary to ensure that the

principles associated with the elastic viscoelastic correspondence principle are not violated

in the application to laminated plate theory.

The correspondence principle states that if the elastic solution for any dependent

variable having a time varying component exists, then the viscoelastic problem can be

solved by replacing the equations of the elastic material by the equations that desciibe the

viscoelastic material. The principle can be applied if (1) the elastic solution is known, (2)

no operaton in obtaining the elastic solution has a corresponding operation in the

viscoelastic solution that involves separating complex modulus into real and imaginary

parts with the exception of the final determination of that response, and (3) the boundary



97
conditions for the elastic and viscoelastic cases are identical (61). These conditions are

satisfied for the case of the vibrating beam.

Schapery (62,63) discusses the mathematical implications of the correspondence
principle. If one performs the Laplace transform on the goveming field and boundary
equations with respect to time, they can be reduced so that they are mathematically
equivalen: to the elastic problem. Consider an isothermal problem, which is the same
condition implemented in this dissertation. Schapery (62,63) begins his development using
the fundamental constitutive relationship for linear viscoelastic materials which provides the
relationship between stresses, o, and strains €;;, for a material with arbitrary degree of
anisotropy. This relationship can be expressed as

o= Jr‘ Gl %—:—' dt
0 (67)
Taking the Laplace Transform of equation 67 and through some simplifications, Schapery

shows that the resulting equation becomes

_ Aklz
g;= Cjj &

(68)

where the é,? term is the product of the Laplace transform of C'i}l and the s term of the

Laplace transform procedure. The time dependent equilibrium equations are given as

d0;;
T + Fi =0
Xj (69)

where F; are the components of the prescribed body force vectors. The six strain

displacement relations are given as
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Equations 67, 69 and 70 completely describe the viscoelastic body. It shouid be noted that
in the above equations 69 and 70 that the depzndent variables are actually functions of four

independent variables, x; and t. Equations 69 and 70 are then operated on by the Laplace

transform, which yields

B L F 0
ox; ! (1)
_ l (al-]l auj}

elj - 5 'az + -X.;

(72)

Christensen (64) shows that the time dependent solution tor the dynamic and quasi-static
problemns can be readily obtained if an analytical solution to the associated elastic problem

exists. In this case, the substitutions

* - _ it
Cijn = Giji U D usuje

— - Lo
Oij -2 O‘ij = GijA [

t t

- _ 10
& D E;=EjnC (73)

can be made, where the subscript A denotes a ime independent amplitude and @ is the

frequency.

Hashin (35) extends this theory with further simplificaticns for composite materials. -

Letting F represent one of the elastic moduli of the composite, it can be described in terms

of N phase properties as F = F(p;) where p; are the phase properties for the composite.
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These phase properties form the set of all elastic constants of all phases which are needed to
predict the effective property F. The effective complex viscoelastic property is then given

as

F. = F(P;) (74)

where F is still the elasticity solution. Its arguments, however, are now complex phase

properties. These compiex phase properties can also be written as

p=p, [ 1+in] (75)

where pj" is the complex modulus. The effective modulus is then expanded in a muitiple,
complex Taylor series, using the real part of the complex phase property pj' a< the set of
values about which the expansion is made. Agsuming that all constituent loss factors are
sufficiently small, the second and higher order terms in 1; can be neglected. This results in

the Taylor expansion of F* as

F-=F'[l+in]EF.+iF" (76)

where F' is the elastic solution in terms of the real part of the phase properties. This
development shows that with small damping, the effective complex properiies can be
derived directly from analytical elasticity solutions. If the constituent loss factors are not
small, this same procedure can be used with a minor modification. In this case, second or
possibly higher order terms in the Taylor series would need to be included, making the
resulting equations much more complex. In the development that follows, then, the

substitution of the viscoelastic comp. « moduli, in the form given in equation 76 will be

made.
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An additional assumption that is made in this development is that the composite is
linearly viscoelastic. A viscoelastic material possesses a time dependent elastic and viscous
response to either an applied suess or strain loading. A linearly viscoelastic material is a .
subset of this having the property that the time dependent mechanical properties are

independent of the level of stress or strain loading.

The local material behavior is governed by the elastic constitutive law as

;i = Cijua & an

In contracted notation, equation 77 can be expanded and written as
O, =C g + Cl2€y + Ci3e,+ C14sz +CisVax + Cl(ﬂxy
0, = Cyigy + Cpa8y + Cpz€, + Coply, +Cos¥ox + Coglay B
Txy = Colex + C62Ey + Cee, + C647yz +C6577.x + CGGny (78)
The elastic viscoelastic correspondence principle can be applied to equations 77 and

78 since these equations meet the conditions stated in the principle. For the specific case of

a vibrating beam, the stress and strain have time varying components. As such, G;; and €;;

are given as

€ =§g;¢ (79)

0 =0y¢ (80)
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It is also assumed that ithe complex moduli are frequency dependent, consisting of a
real and imaginary term, called the storage and loss modulus, respectively. It will be
assumed that the storage modulus is independent of frequency. In the frequency range of
interest, up 1o 1000 Hz., this is a very goo! approximation based on the work of other
investigators (27,35,41,64). The frequency dependence of the complex modulus is
therefore the result of the frequency dependence of the loss modulus. This frequency
dependence of the loss modulus is the result of the frequency dependence of the loss
modulus of the matrix material which has been been shown to occur by various
investigators (1,2,3,64). As such, usiag the elastic viscoelastic correspondence principle,

equation 77 is given as

;i = Gijii €k 81

where

* Real | . ~lm
Ciini = Cijin +1i Cijla() (82)

Two assumptions are now made. First, that the fiber composite material can be
approximated as a homogeneous material with orthotropic material properties. This
reduces the number of elastic constants given by equations 77 and 81 from 3610 9. A
sccond assumption is that the material is in a state of plane stress assumption, where the
stresses normal 1o the plane of the plate are assumed to be zero, i.e. 3= 123 = 73 =0.
Without loss in generality, the ime-varying components of the stress,

O3 e'9l= 153 el = 73 €!® can likewise be assumed to be zero. This assumption further

reduces the number of elastic constants to 4 independent values. The viscoelastic

constitutive relationships can now be expressed as
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°;= Q;l C;"' Q:ze;‘*‘ Q;(:Y;y (83)
0y = Qo &+ Q2 &+ Qas iy (84)
Ty = Qa1 & + Q2 & + Qoo Yoy (85)

Equations 83-85 reduce to the elastic case if there is no frequency variation in stresses and
strains. This is equivalent to setting the frequency equal to 0. As such, the time varying

component for = 0 gives the result that ¢'@! = 1, In this case equations 83-85 become

Cx = Qui€x +Q28y + QieYay (86)
O‘y = Q2]£x + szey + QZGny (87)
Ty2 = Qg1€x + Qg2€y + Qg Yny (38)

The flat plate may be acted upon by applied moments, M, distributed applied loads,
Q. in-plane loads, N, and point inads P. It is assumed that the plate consists of multiple
layers of composite lar-inae, with the fibers in each plate being paraliel to the plane of the
plate. Kirchhoff’s hypothesis is then applied to the plate, i.e. lines that are straight and
normal to the laminate’s geometric mid-surface remair straight and normal to this geometric
midplane and do not change length. This means that the lamina interfaces remain parallel to
each other after application of the applied loads. It is therefore possible to express the
displacement of the material points which lie along a line perpendicular to the laminates
geometric midsurface in terms of the displacement and rotation of the point on the line

located at the laminates geometric midplane. The implication of this hypothesis is that the

displacement at any point (x,y,z) depends linearly on z. The time dependent displacement
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in the x, y and z directions, given as u®, v* and w* respectively, can be written in terms of
the midplane displacements denoted by the © superscript, as

ow’(x,y) o

U (x,y,2) = ux.y) ¢~z “ox (89)

. i awo(xsy) {03
vxyz)=ve(xy)e -2 ¢
y y (90)

. .
w (x,y.2) = W' (x,y) '@

91)

In the case where these displacements do not vary with time, equations 89-91 reduce to the

elastic case, again making use of the fact that ei® = | for w = 0. These displacements are

then given as

ow’(x,y)

u(x,y,2) =u’(x,y) -z "

v(xy.2) =V (xy) -2 i%(yw

w(x,y,z) = w° (x,y) o)

The effect of Kirchhoff’s hypothesis on the strain response, using the definition of the

strain ia the x direction on equation 89, results in

u’(x,y) B 32w°(x,y)

._au'(x,y,z)_au°(x.y) '™ BZW°(x,y) it _ i
M e 2 T )° (95)
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The frequency independent strain is readily seen to result from the last equality, giving

_du(x,y,z) _ du’(x,y) I’ wo(x,y)
£, (x,y,2) = ox = ox -2 Py 96)

In equation 95, the first term in the last equality is due to the extensional strain of the
reference surface. The second term is the curvature of the reference surface in the x
direciion since the material is limited to small rotations, which will henceforth be given by

K;C. Using this information, equation 96 can be rewritten as

£, (x,y,2) =€ (x,y)e' "+ z K2 (x,y)e' ™
97)

This again reduces that the classical case when the frequency is set equal to zero as

£y (x.y,2) = & (x.y) + 2 K; {x,) (98)

In an analogous manner. the time dependent strain in the y direction can be determined
using equations 90 in the same manner that the strain in the x direction was determined.

This development results in the transverse strain given as

1ot

. v (x,y,2) _ovix,y) e 82w°(x,y) i | 9V(x.y) 82w°(x,y) P
g, = 5y = 3y -2 ¢ = 3y Z > e
dy dy (99)

The resultant frequency independent transverse strain is derived from equation 99 as

ov(x,y,z) - o v°(x.y) _, 82w°(x,y)
dy’ (100)

g, (x.y,z) = Jy Y




105
In equations 99 and 100, the first term in the last equality is the result of the extensional
strain of the reference surface. The second term is the curvature of the reference surface in
the y direction since the material is limited to small rotations. Using this information,

equations 99 and 100 can be rewritien as

g (xy,2) =€ (xy)e' ™+ 2z k5 (x,y)e' (101}

& (xy.2) = € (x.y) + 2 Ky (x.y) (102)

Similarly, using the definition of the in-plane shear strains, the complex and conventional

in-plane shear strains are given as

. BV (xy.2) N u'(xy,z) o

1t o il

Y= ~ox dy & FIkye (103)
_ov(xy,z)  du(xyz) o 0

Yy (Ky2) = T T S hy h 2Ky (104)

Using the strains which were obtained using the Kirchhoff hypothesis, equations 83-85

can be written in the aliemnative form

" *® * - 0o 0
c - - - +zK
x Qy Qu Qp & A
L] L L] (] (¢] H
c =la * - - +2K it
y Q2" Qp QO & y e

— —-® (4]

_.
Try Qs Qs Qs Yoy + 2 Ky
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where 6,* are the frequency dependent stresses as given in equation 80. These
reladonships again clearly reduce to the general elastic case when the frequency dependence

is taken to be zero. The resulting relations are given below.

- (V] 0

Ox Q; Q2 Qg &z

= (4] (o)

Oy 151 Q2 Qa2 Qs rzn
Txy Qe Qs Qs Y:y Tz Ky (106)

The Q;, both real and complex, are the reduced stiffnesses for a composite with arbitrary

fiber orientation.

The frequency dependent force and moment resultants are now defined as

h
2 h
1 * »* x 2 i
(NX' Ny, ny )Cluxzjh ( ox’ Gy» txy)dZ'—' J‘ h( Ox’ oy) Txy )C o dz
h 3
2 (107)
h
: 1
1 r * * * 1
(Mg My, My)e'™= | (0, 0y, T) zdz=jh( Gy Oy Ty )e' ¥z dz
A L
2 (108)

where h is the laminate thickness. These reduce to the analogous elastic case by letting @

equal zero. This then gives the force and moment resultants as

h

. 2
(Nx’ Nya ny ) = J\h ( oxv 0}:7 Txy ) dZ
2

(109)
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h

2
M,, My, M, )= Jh ( Oy, Oy, Tyy ) 2dz
2 (110)

The substitution of equation 105 into equation 107 yields for the time varying or complex

normal force in the x direction

h * = -% R
Nxe“”‘=j2h (Qi(E +2 K7 ) + Qaey + 2 Ky )+ Que(Toy + 2 Ky ) ' dz

111)

which is seen to reduce in the frequency independent case to the classical force resultant

h
N, =_’th (Q(ex+2 K:)'*'le(ti;"' z K;)+Q16(Y:y+ z Kgy )l dz
3 (112)

The integrand in equation 111 can be distributed over the six resultant terms. In addition,
the strains and curvatures can be taken outside the integral since they are not functions of
position z. Further simplifications can be made by considering each of the integrals

separately. The first integral in equation 111 is given as

h

. -
o 1Ot
&e |3 Qdz

(113)

The reduced stiffnesses are material properties which vary from layer to layer but are

constant within any given layer. Since the reduced stiffnesses are piecewise constant, the

integral can be expanded through the thickness to give




108
7 _=

7 s o _»
ndz = Q) dz +J Qdz +...+ J. Q1,92
L] Z I

ie

Ml._,.m:-

(114)

Since each of the Qij are only functions of frequency within the integral, they can be taken
out of the integration. The integration then becomes simply the thickness of the particular -

layer of the materiai. Equation 114 can be wrnitten as a finite summation, given as

h Q11dz = Z Qu, (2 = 2x-1)
2 (115)

In the classical elastic case, this is typically denoted as Aj). As such, this term will be

denoted as Ay;”.

The same procedure can be applied to the other terms of equation 107 with similar
reductions being made. The mathematical manipuiations performed do not violate any

fundamental principles. The results are presented below

h - N1 %
4 Qudz=Ap= 2 Qia, (= 1)
2 k=1 {116)

S R=2

~* - ~ _
Quedz= A= 2, Qi6, (2 = zx1)
k=1 (117)

Nz

h

N
Qllz dz=Bj; = Z Q, (2 — %-1)
k=1
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h

? Quzdz=B;;= z le (2% - Z-1)

2 (119)

h *»
_22 Q2 dz=Bjg = 2 ka (zk ~ %)
2 (120)

With the utilization of equation 82, it is readily seen that equations 116-120 reduce to the

classical elastic case when there is no frequency dependence.

Continuing this process for the moment resultants, the frequency dependent complex
general laminated piate theory reduced stiffness matrix can be determined. Since the
development is straightforward, involving only simple mathematical manipulations, all that

will be given here is the summary of the results in contracted notation.

= Z ij (zx — 24-1)
k=1

. 2 2
B;= Z Q; (z— 1)
k=1

. -3 3
D= Z Q; (z—z-1)
k=1

(123)

In matrix form, the above frequency dependent or complex reduced elastic constants are

used to relate the in-plane stresses to strains. The specific relationship is given as
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Nx(f) A AR A'® | Bu(h Bi"@® Bis'® | | &0
Ny(f) AR AR Ax'(D | Bi2'() Bn'(® Bx'® || &0
Ny® | = | Als® A’ Aes (® | Big'()  Bae'(f) Bes (M | | Yay(f)
M(f) Bi*® Bi2'(® Bie'® | Di*® D' Dig’) | | KD
My(f) Biz") Bp') Ba'® | Di*) Dn*(f) Das"(h) | | xy(D -
Myy (D) Big'(D B’ Bes'(® | Die’(D Das'() Des'(D | | x3y(D

(124)

The A", Bjj", and Djj" terms are funtions of the the Q;j terms. The Q;; terms are functions
of the elastic constants. This can be seen by using equations 83-85 with a uniaxial
composite laminate. Using the relationship given in equation 3 that the loss factor 1 is the

ratic of the imaginary to real part of the elastic moduli, and the development of Hashin(35)

which was given in equation 76, the relationship of the Qyy's in terms of elastic constants

can be written as

E; (D _ E, (1 +ing (0)

(1-03;05)  (1-0); V) (125)

Q) (H=

QD pE®  bE®O vy E 0+
12\ 0

',\L—Uz] UIZ) (1—021 UIZ) (I_U;l UIZ ) (126)

E,() _ Ep(l +ing D)

(1-v3; V17) (1-vy, v12) 12n

Q) =

Qes(0) = Gi2(D) = Gy (1 +1M5(6) (128)

where the * denotes a complex value. Equations 125-128 will reduce to the classical elastic

case when there is no frequency dependence.
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In equations 125-128, all of the elastic constants can be readily determined through
various experimental procedures that have been discussed 1n Chapter 2, with the exception
of the complex Poisson’s ratios. Since there have bezn no experimental techniques
identitied to determine the complex Poisson’s ratios, two assumptions will be made
concerning them. First, it is assumed that the Poisson'’s ratios are independent of
frequency. Secondly, it is assumed that they are real. The consequences of these
assumptions will be discussed in Chapter 6. There it will be shown that this assumption

results in only mino: differences in the resultant analytical response of the material.

These stiffness terms are the basic building blocks for the analysis of the frequency
response of a general laminated plate. Using this information developed for the
unidirecticnal material characteristics, the response of a general laminated composite
material can be determined using conventional tensor transformations. The transformed BN

reduced stiffnesses can be determined as
—Q.u 6 =m0 +2m2n2[Q:2(f)+2Q;6(f)]+n4Q;2(f) (129)
Qu (=0 (O =m?n[Q, (O + Qi () =4 Qs (D] + (m*+1* ) Qf () (130)
63(03"4 QD +2mn2[ Q) +2 Qe () |+ m* Q5 (D) (131)

Qie=m’n [Qf; () - Qiz () - 2Qe®] + m n° [Qz (0 - Q2 D+ 206D (13

Qemm Q) (1) - Qi () - 2Q4(0] +m’n [Q (D - Qn (D +2Q (133,




112
Qe=mn?[Qf )+ Q) ~2Qn (D -2Qse ] + (m*+ 0 ) QD (134

where m is the cosine of @ and n is the sine of ©, and @ is the angle the fibers make to the

principle loading direction of the laminate. For the general laminate, the extensional,

coupling and bending stiffness matrices can be determined from the dj terms. In contracied .
notation, the explicit frequency dependence of Aij*, Bij*, and Dij* are defined as

N
AD = Ag+iAD = Y (Q; () (hy—hyy)
k=1

(135)
N
Bi(D = B+ iBi() = 5 Z,(b} ) (b2 -h2) -
N
D =D+ IDy(0) = 5 3, (Qy ) G -h _
=1 (137)

From the reduced stiffness matrix, the loss factor of a general laminated plate can be
determined. This is readily done by utilizing the relationship given in equation 3. The
relationship states that the loss factor is the ratio of the imaginary to the real part of the
complex moduli. Other investigators have utilized a similar development. In their work,
however, the frequency dependent loss modulus is not accouated for. Another assumption
that is made in their efforts is in the determination of the laminated composite loss factors.

Their development indicates tha: the effective loss factor in tension, for example, is given

as




A (138)
where A"q) is the imaginary part of A*|; and A’y is the real part of A%} (55). The
assurmnption that is being made here is that the effective stiffness of the laminate is given as

o An+iAg
- h (139)

In actuality, the effective moduli is determined from the ABD inverse matrix. The inverse
ABD matrix takes into account the stress couplings that may occur from the various
orientations of the fibers used in the lamir.ite. As such, the effective moduli is given as

* 1

E = T .
h(A T +ATH)

(140)

Using this correct formulation of the effective extensional moduli of the composite the
material effective loss factor is given as

--1
Ay

-1
An (141)

Nx

Similarly, the transverse modulus is again given in terms of the inverse ABD matrix as

1
h Az

E;:

(142)

Using the relationship for the loss factor from equation 3, the transverse loss factor is then

given as




Az (143)
In a similar manner, the other components of the inverse ABD matrix can be used to

determine the loss factor in shear, 1y, of the laminate.

In the typical cantilever beam testing of a general laminated composite sample, the
effective bending stiffness wiil govern the beam motion. For the 0° and 90° composite
orientations, the stiffness of the beam in bending is equal to the modulus of the material in
that direction, cr can be described as Ex. However, in tiie case of the general laminated
beam, the beam motion will be governed by the effective bending stiffness of the specific
construction. It has been shown analytically and experimentally that the effective bending

stiffness of a general laminated beam is given as (65)

12
Edf(nivcwm =3
* h'Dy,
(144)

where h is the beam thickness. Following the same lines of reasoning as given above, in

complex notation, the complex effective bending stiffness is given as

. 12
Ed'fmi =TT
VG, IR*-1
* Dy, (145)

With the effective bending stiffness determined, the loss factor as a function of frequency

can be determined as the ratio of the complex to real parts of the value, or

Ed fmivcwmg(f)

MNbunding (D =
Edf(nivqm
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where

E dfoctive, gD = Edativay,, + 1 Eeffocive gy, (D) (147)

For a general laminated beam, then, the loss factor can be analytically determined by
first determining the material complex eiastic moduli through cantilever beam testing over
the frequency range of interest. The comy lex reduced stiffnesses can then be determined as
given above. Depending on the type of test method utilized, the longitudinal, transverse or

bending loss factor can then be determined using equations 141, 143, 146, respectively.

Although the use of the elastic viscoelastic correspondence principle has been
proposed for use with compositzs to predict the loss factor, the incorporation of the
frequency effect of the material constituents has not been attempted. The most probable
reason for this is twofold. First, there does not appear to have been a complete loss factor
characterization performed on any composite system, as was evident from the discussion in
the Chapter 2. Typically, the investigators reported a loss factor at a specific frequency.
The frequency of test was dependent on the specific geometry and material used. To carry
out a complete characterization is both time consuming and expcnsive. Secondly, the
mathematics of complex matrix manipulation is cuite difficult and is not easily done by
hand. Matrix manipulation using computers has been feasible, using real vanables.
However, the incorporation of complex terms into the matrix manipulations has until

recently been difficult, if not impossible. With the advent of symbolic manipulators such

as Mathematicary, this type of manipulation can now be readily performed.




Chapter 4

DEVELOPMENT OF EXPERIMENTTAL TECHNIQUE

The proposed analytical model requires as input the in-plane damping loss factors of
the corposite, 1111, N2 and My,. An experimental technique that can determine these loss
tactors was designed and developed using various aspects of techniques that were
previously desci:bed in the Chapter 2. One decision made in considering the design of a
technique was that only one testing methodology would be utilized. It was felt that this

would keep constant any errors associated with the test procedure.

There have been numerous technigues utilized to experimentally determine the
vibration damping loss factor of compasites, as was previously detailed in the Chapter 2.
Of these techniques, those used most recently are the forced resonant vibration
technique(30,41) and the impulse teckinique(47,48,66), of which the impuise technique
appears to be th= most widely « ccepted. In the impulse technique, the specimen is normally
held in a cantilever beam configuration, and is excited via an impact near the clamped end.
The beam response is measured using either accelerometers or a noncontact eddy current
probe. From the beam displacement versus time information, the frequency response
function is determined. The data reduction scheme that is then typically employed to

determine the demping loss factor is the half power band width method.

116
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The impuise technique uses a cantilever beam specimen configuration for loss factor
determination. To determine the loss factors 1 and 1, for the composite, unidirectional
(° and 90° specimens, respectively can be used. To determine ;5 a specimen orientation
of +45° will be used as an initial estimate. These experimental values will later be used to
determine a more accurate estimate of 19 by using the analytical model along with these
experimental values to back calculate the shear loss loss factor. This will be discussed in

further detail in Chapter 6.

The manner in which the sample is supported is of vital importance 1o the accurate
determination of the material damping loss factor. Care must be taken to ensure that the
fixturing and materials used in the apparatus dissipate a minimal amount of energy. Losses
that can occur at the clamping area include frictional losses and dissipation by any interface

material used between the specimen and clamp block.

There are numerous iechnical reasons why the impulse technique has gained wide
acceptance for testing composites. First, all vibrational frequencies are excited when the
specimen is subjected to an impact. The fundamental frequencies and the various modes of
vibration can therefore be investigated using a single specimen. This can be accomplished
by determining the loss factor of the various modes of vibration for a single beam length or
by varying the beam length to obtain different resonant frequencies. Secondly, to minimize
external energy losses from such sources as friction at the clamped region or from
aerodynamic damping, beam tuip displacements must be minimized. For low frequencies,
which are of major concem for various structural applications, placing the beam into

resonant forced vibration usually results in large tip displacements. The damping loss
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factor that is determined may be a combination of the material internal damping and external
losses. This information would therefore be of little use for design purposes. With an
impulse excitation, minimal force levels can still be used with resultant tip displacements

beiag kept to a minimum.

The following will describe the experimental apparatus designed and developed for
the experimental determination of the damping loss factors for composite materials,
including both the fixturing and the hardware and software used for data acquisition. In
addition, the results of the experimental calibration of this system are reported. This testing
utilizes 2024 T-4 aluminum beams as the calibration specimien. The 2024 T-4 aluminum
was chosen because it has been well characterized experimentally and has been shown to
analytically follow Zener thermoelastic theory (26,62) for the daraping loss factor as a

function of frequency (8, 63).

For vibration damping testing, there are two primary considerations when designing
fixturing for testing materials. First, it is necessary that the specimen be isolated from its
surroundings. No vibrational energy from external sources should be allowed to influence
the vibrational response of the specimen being tested. Accemplishment of this likewise
infers that the vibrational energy imparted 1o the specimen will not be dissipated by the
fixturing due to an energy transfer from the specimen. Secondly, care must be takenr to -

minimize all other possible sources of ¢nergy dissipation so that the measured damping is

the material inherent damping loss factor. Two prevalent sources for external energy
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dissipation which should be minimized are frictional losses at the clamping egions(67) and

aerodynarnic damping (30,37,41,68.,69).

In order to isolate the specimen from the surroundings, the specimen fixturing was
attached to the load frame of a Sontag fatigue test machine, model SF-1U. This machine
consists of a 36 x 36 x 3 in. solid steel top atiachment plate to which the components for
fatigue testing are attached. The entire system is isolated from the machine frame via four
springs, effectively isolating it from the surroundings. In addition, the mass of this support
system 1is several hundred pounds, which was ¢xperimentally shown to be not easily
excited by the impulse excitation, the vibration of the test specimens, or other external

energy sources.

The fixturing that was designed and fabricated for this program and used in

subsequent testing of the composite materiais is shown in Figure 10. This consists of a
steei base plare, 12 x 16 x 1 in., which is bolted to the top plate of the Sontag machine with
four 0.75 in. diameter bolts. A solid aluminum breadboard is then bolted to this plate with
four scrzws. The breadboard consists of a 12 x 12 inch plate with 1/4-20 mounting holes
on a 1 inch spaced square pattern starting 1.5 inches from the edge. This breadboard
allows for eacy accurate positioning of the eddy current probe. A 8 x 14 x 1.25 in. vertical
support plate is bolted to the 12 x 16 in. base plate at one end of the base plate. This
vertical support piate has two machined 12 irich long 0.75 in slots which are centered 6 in.
apart. A movable attachment block, wiich consists of a 7 x 1.25 x 1.25 in steel bar, is then
bolted to the support plate using two 0.75 in. bolts. Two 0.75 in. diameter holes are

machined into this attachment block to accept two tool steel guide rods S in. in length. A
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. Vertical support block {8 x 14 x 1.25 in)
' Attachment block (1.25x 1.25x 701n)
Linear bearings

Tool steel guide rod

—— Clamp block (1.25x 1.25x4.0in)

Instrumented force hammer

Composite specimen

Eddy current probe
/ la@——— X-Z venier

Aluminum
{ breadboard

\——— Steel mounting plaic (12 x 16 x 1.0 )

Figure 10 Schematic of the apparatus for testing the vioration damping loss factor of
composites using a vertically oriented cantilever beam.
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movable clamping block is then bolted to the attachment block. This consists of a 4 x 1.25
x 1.25 in. steel plate which is machined to accept linear bearings through which the guide
posts will pass. The use of the guide rods and linear bearings is to ensure uniform
clamping on the test specimens. By minimizing eccentric clamping of the specimen,
perturbation from the beam true modal response should be minimized. Test specimens
with widths up to 1.5 in. and of any thickness can be clamped by this fixture using two

1/4-20 screws.

The eddy current probe is positioned in proximity to the beam tip using an X-Z
vernier. The vernier is attached to the breadboard with four cap screws. This specific
vernier has a 0.5 inch travel in each direction. By repositioning the vernier at different bolt
locations on the breadboard, beams of any thickness can be interrogated with the eddy
current probe. It should be noted that a Plexiglas fixture, to which the eddy curreat probe is
fastened, was fabricated to attach the eddy current probe to the vemier. The use of
Plexiglas was required since the eddy current probe was unshielded and metallic structures
near the sensor can result in spurious displacement determination. A schematic of the entire

assembly is given in Figure 11.

Experimental Procedure

For damping loss factor determination, beam tip displacement versus time
infonnanion is required. The eddy current probe is used to measure the tip displacement.
This probe is electrically excited and outputs a voliage dependent on its distance from a

conducting medium. This particular probe can be used for both magnetic and non-magnetic
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Figure 11 Schematic of instrumentation for vibration damping testing
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materials. The probe has a measuring range of 0.120 inches with a resolution of 0.01% of
the measuring range. The probe must be calibrated before use. To accomplish this, it is
placed into a micrometer calibration fixture, Kaman part number 850854-001. Following
the calibration procedure, the output of the eddy current probe is adjusted to the
requirements of the test. The gain can be adjusted to optimize sensitivity for particular
tests. For this testing program, the probe was calibrated so that 1 volt was equal to

0.040 in. of displacement. Displacement vs. voltage information was ubtained with the
fixwure using increments of 0.005 in. A linear fit was then performed on the data shown in
Figure 12. This linear fit had a correlation coefficient of 99.98%. The linear fit of the
voltage vs. displacement data was used in the software written to determine the beam

vibration response.

In the vibration testing, the beam specimen response is normally recorded using an
FFT analyzer or a high speed A-D board. For this investigatior, a high speed A-D board
was utilized. This type of system required 2 minimal capital iavestment, approximately
$2,000 as apposed to approximately $50,000 for the FFT analyzer. In addition, the use of
the A-D board aliows for maximum flexibility in system design and data manipulation. The
data acquisition board purchased for this program was a MetraByte Das-16 A-D board.
This system has a maximum acquisition raie of 76 kHz, which was verified using the

ouiput of a digital oscilloscope.

The specimens were excited using an impulse excitation from a modally tuned impact
hammer. This hammer is a PCB Piczotronics, Inc., Model No. 086B01 impulse hammer

with a 0-100 Ib. force output. The hammer is supplied with impact tips of varying
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hardness. It was observed in the testing that for the higher frequencies, the harder tips

were required to ensure a reproducible tip displacement vibration.

The output from the eddy current probe and the force hammer are attached to the
MewraByte DAS-16 screw terminal accessory board using BNC connectors. The accessory
board is connected to the DAS-16 data acquisition board installed in an IBM PC-AT. This
is a 16 channel high speed A/D interface with direct memory access (DMA). This system
has a 10 MHz on-board crystal-controlled oscillator to provide the time base. The system
can be set up to read voltage ranges of 0 to 10 volts, -10 volts to 10 volts, or -5 volts to
+5 volts. For this program the -5 to +5 volt range was used. The information is stored
and read in bits with a range of -2048 to 2047 bits corresponding to -5 and +5 volts,
respectively. The systemn resolution, then, with the eddy current probe calibration set to

0.04 in. per volt, is 9.78 x 107 in.

The DAS-16 A-D board is controlled by computer programs which are written in
basic. There are numerous call routines available that activate various functions of the
board. The program that was written to acquire the beam tip displacement and impulse
force excitation utilized many of the capabilities of the hardware. The program was written
to be interactive, prompting the user throughout its execution. Initially, the user is
instructed to attach the instrument output leads to the appropriate input positions on the
accessory bourd. To allow for the positioning of the eddy current probe to its calibrated
zero, the program initially monitors only the eddy current probe output. A single

positioning of the probe is not possible since there are slight variations in the thickness

fruin specimen to specimen and specimens of different thickness were used throughout the
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program. To allow for this positioning, the program is set up to monitor the output of the

eddy current probe continuously at an acquisition rate of 76 kHz. The computer routine

records this output as bits in sets of 1266 data points using direct memory access. These

values are summed and averaged and output o the CRT screen. The user views this output,

again in bits, which is updated 4 times a second. By adjusting the x positioning vernier of .

the eddy current probe, the output is reproducibly kept to a variation of + 0.1 bits.

After this positioning, the program is automatically set to read two channels, which
correspond to the output of the eddy current probe and the impulse hammer. The program
then allows the user to choose the acquisition rate. It also allows the user to choose the
number of data points to record, up to a maxirnum of 12000. Choosing an acquisition rate
which is greater than 20 times the resonant frequency of the beam using the maximum data
set size captures oniy a portion of the beam vibration response. This resuits in a loss of
resoluton in the FFT. The ability to vary the acquisition rate allows the user to zoom into a
particular frequency range. In order to prevent aliasing, or distortion of the Fourier
transform (70), however, the acquisition rate should be at least 8 times the frequency of

interest. This is shown through the calibration testing that was performed.

The are several rigger routines available for the board. The trigger that was settled
on was a manual tigger. The user is instructed to hit any key on the computer keyboard to
activaie the program to continue execution and record the output of the instrumentation.
Typically what is done then is to hit the enter key on the keyboard and strike the beam with

the hammer in quick succession. At this point the program records the specified number of

data points to memory.




The data is then transferred from memory, converted to actual displacement and
force, and stored as an array. The user then has two graphic options. First, the data can be
plotted to the CRT screen as the log of the displacement versus time and force versus time.
This first option allows the user to make a quick check on the amplitude decay to ensure
qualitatively that there are no secondary sources of energy dissipation. This would be
indicated by the appearance of two distinct slopes of the peak height values from the log
displacement versus time plot. Figurc 13 is an example of the log displacement versus time
plot from the vibration responsc of 2024 T-4 aluminum subjected to an impact excitation.
The second option allows a screen plot of the displacement versus time. This ensures
proper positioning of the eddy current probe by viewing the symn:etry of the beam
response abeut the zero displacement. Figure 14 shows a representative displacement

versus time plot of the same sample.

The user can likewise continue through the computer routine without plotting the
data. At this point, the program prompts the user for the file name and address where the
data will be transferred. The data can be transferred as the digital stored information, or it
can be stored as actual displacements. An option in the program allows the user to input the
specific scaling factors obtained from the calibration of the eddy current probe. This is
useful if different probes are used. The program then creates and opens the storage file and
wansfers the appropriate data there. In addition, the program places a header in the data file

that includes the acquisition rate and interval between data points. An annotated copy of

this data acquisition program is given in Appendix A.
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Figure 13 Log displacement vs. time curve for 2024 T-4 aluminum.
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Figure 14 Displacement vs. time curve for 2024 T-4 aluminum.
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To perform the Fast Fourier Transform (FFY) on the data, the Interactive Labo:atory
System software from Signal Technologies Incorporated is utilized. The displacement vs.
time data is first read and stored as a sample file using the ILS software. The system
pariitions this data into records of up to 2048 data points. The size of these data sets used in
the inves  ations that follows wre either 512 or 2048. Ttie ILS software is then used to -
perform the FFT on any record and the information is stored to a file. The software is then
used to transfer the FFT information as an ASCII file which can be manipulated and read
by various other software routines. The information that is transferred includes the

frequency, dB magnitude and phase for each data point.

The FFT that is obtained is the net vibration amplitude at various frequencies, or the
frequency response of the time domain signal. When this net vibration amplitude is ploited
vs. frecuency, a series of resclved peaks occur. These peaks correspond to the resonant
frequencies of the beam. As long as the resonant peaks have negligible overlap, the loss
factor for the material can be determined using the half power band width method which
was previously given as equation 3 (1). Figure 15 shows the FFT for the beam vibration

shown in Figure 14. It 1s readily secn that no overlap occurs in any of the resonant peaks.

It is not intuitively obvious how damping loss factor determination can be determined
using the half power band width. To convince the reader that this methodology is valid,
an analytical development of the determination of the loss factor using the half power band

width method for a cantilever beam is given in Appendix B. This is derived using the

general equations of motion of a beam.
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In order to determine the loss €actor, then, the peak height and the half power points
need to be determined. Initially, a graphical representation of the dB magnitude of the FFT
versus frequency is obtained within a narrow band of the calculated resonant frequency.
This is accomplished using a commercially available graphics software called Grapher,
written by Golden Software. A curve fit is performed on the digital data on each side of the -
resonant frequency. The values which correspond to the left and right side of the peak are
readily identifiable by a 2r phase shift as is shown in Figure 16. Through experimental
investigations, it was determined that 2 {ourth order polynomial using orthogonal
coefficients provided the best fit to each side of the peak height values. The orthogonal
ccefficients and the recursion factors for the data which describe each side of the resonant
frequency are recorded and written to a file. The curve fits for the sample data set shown in

Figure 16 are given in Table 10.

The specific fourth order equation with orthogonal coefficients used for the curve fit

routine is given as follows

Y= Bl +(X-02)[B2 +(X‘a3)(BS +(X'G.4)(B4 +(X'a5)B5) - ﬁt‘ Bs}-
Bs(B,4 +[x -0s 1Bs )] - By [B3 +(x -tag ){ B4 +(x -0t5 )Bs } -By Bs) (148)

where the B, are the orthogoaal coefficients, and the a; and b; are the recursion factors.

The value of x used in equation 148 is calculated from the experimental frequency data '

using the following equation

X = ( Xinput - Xmid) Xscal (149)

Where Xinpy i a specific frequency and the Xy and ., are scaling factors for the original
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Table 10: Fourti: order polynomial fit statistics for peak values from the FFT given in

LEFT SIDE OF PEAK

Orthogonal
Factors

Recursion Factors
Alpha Beta

-3.6147

0 0

1.24339

-G.000321833 1.55585

0.458577

0.000065269 1.22238

0.161536

0.000107365 1.1425

0.0916427

0.000147984 1.07872

RIGHT SIDE OF PEAK

Orthogonal
Factors

Recursion Factors
Alpha Beia

-3.86925

0 0

-1.35138

-0.060219959 1.52375

£.496194

-0.000141379 1.20287

-0.234782

0.000124755 1.13346

0.122776

0.000279605 1.08324

frequency data that is determined using the fourth order polynomial curve fit routine of

Grapher.

The file that was created with the values of the orthogoral factors, and the alpha and
beta recursion factors is then used as input to a basic computer routine which was written

for this dissertation. This program determines the dB magnitude of the intersection of the
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two curves, i.e. the left and right curves for the resonant frequency peak, and the

frequencies correspending to the half power points for the specific curves. The half power
points are the values of the frequency that correspond to -3dB of the magnitude of the peak
height value for the resonant peak. The loss factor is then determined using equation 3, or

as follows

r (3)

where Af;, is the difference in the frequencies at the half power points and £, is the resonart
frequency calculated as the intersection of the two curves. An annotated version of this

program is given in Appendix C.

A schematic of the instrumentation and compuier routines used to determine the

damping loss factor of the cantilever beams was previously given in Figure 11.

Calibration of Experimental Apparatus

In order to calibrate the system and to determine the accuracy and precision of the
procedure, a material with a well characterized damping loss factor over the frequency
range of interest was tested. The material used here, as well as by numerous other
investigators, was 2024 T-4 aluminum. The materials loss factor can be analytically
determined at any frequency using Zener Thermoelastic Theory. In addition, since the
magnitude of loss factor of this materiai is very low, experimental replication of the

analytical results will ensure that extraneous sources of energy dissipation are minitaized.
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Initially, beams were machined from 0.125 in. plate to specimens with widths of 1.0
inches and lengths of 12 inches. The 12 inch lengths were machined parallel to within
0.001 in. to minimize any errors in the test results. After the initial vibration tests, one end
of these beams was machined to a specific length. By changing the beam length, the first
resonant frequency was changed. By testing beams of various lengths, then, it was
possible to characierize the loss factor of the 2024 T-4 aluminum over a frequency range of

10-300 Hz.

Beam lengths to be used to obtain a specific frequency in the calibration were
analytically determined. The first resonant frequency of a cantilever beam can be

determined using the following equation (30)

(150)
where E is the bending stiffness, I is the moment of inentia of the beam, g is the
acceleration due to gravity, W, is the weight per unit length, L is the beam length and C; is

the constant for the it mode of vibration.(1)

As was previously mentioned, there are two sources of energy dissipation that must
be minimized to ensure that the damping loss factor experimentally determined is of the
material internal damping and not from external dissipation sources. These sources are

aerodynamic damping and frictional losses at the clamped region of the beam.

A study was conducted to determine explicitly the contribution of the aerodynamic -
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damping for this experimental program. The aluminum calibration bearn was excited with
increasing force levels to obtain increasing tip displacements. The results of the testing
indicated that no variation in loss factor was obtained in the range of 0.006 10 0.012 in
(67,71). Two other investigations have shown that aerodynamic damping could be

minimized if tip displacements were kept less than 30% of the specimen thickness.(41,69)

Baker et al (72) conducted an extensive investigation on the effect of air dainping on
beam vibrations. Thin metallic beams were tested in both air and under vacuum. From
their work, they conclude that as vibration amiplitude is decreased, the damping due to air
becomes less, but never zero. Using their analysis to estimate the air damp‘ng which
results from the beam tip amplitudes obtained in the calibration study for this program, the
additiona! damping from aerodynamic sources wouid be approximately 5 x 104. Since this
value is within the experimental accuracy of the testing procedure, it will be assumed that

the measured loss factor is from materiai damping.

To minimize aeronynamic damping in this program, loss facturs were only
determined for samples where maximum tip displacements were less than +0.012 in. This
represents a displacement less than 11% of the total beam thickness. This displace:nent
level falls within those recommended 1o ensure a minimal contrioution from acrodvnamic

damping.

The second source of energy dissipation that can be controlled and should be

minimized are the frictional losses at the clamped region of the beam. Aa investigation was

conducted where various materials were placed between the specimen and the clamping
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block. These materials included tapered aluminum clamping blocks, tapered fiberglass
blocks, fiberglass fabric reinforced polyurethane sheet, fiberglass fabric reinforced Teflon,
and no clamping i:lock. These systems were positioned between the sample to be tested
and the clamping blocks. The specimens were tested using the procedure described above.
The experimentally determined loss factors were compared to that analytically predicted
from Zener Thermoelastic Theory. The clamping material which resulted in the lowest
experimental value of the loss factor for the beam was the fiberglass fabric reinforced
Teflon sheet. The loss factor determined using this material also exhibited superior
correlation with theory. Since all other clamping materials gave results that were higher
than anticipated, it was assumed that they were providing additional source for energy
dissipation. The material that was used for the rest of the testing was therefore the

fiberglass fabric reinforced Teflon sheet.

In addition, the effect of clamping pressure on the loss factor was determined by
determining the loss factor as a function of the clamp block bolt torque. A clamping force
that is too small will result in a sliding action, causing high frictional losses. A clamping

pressure that if too high may cause damage to the specimen. This damage will resvlt in

higher loss factors either from stress concentrations or from friction at the damage sites.

The clamping pressure that resulted in consistent results with no degradation to the

specimen was 10 ft-1b.

To conduct a test, a specimen is first placed into the test fixwre. The eddy current
probe is positioned so that its center was approximately 0.5 in. from the specimen end and

in the middle of the specimen width. The probe distance from the beam is then adjusted,

I R Lo iihas tow -
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while monitoring the output, until the voltage output is near zero.

Beam lengths were varied so that the first resonant frequency was varied from
approximately 38 Hz. to 300 Hz. The test procedure given above was followed and the

loss factors determined. The results from the testing are given in Table 11. B -

The results of the test program were compared with the predictions determined using
Zener thermoelastic theory. The 2024 T-4 aluminum beam specimens have been shown to i /‘.
follow predictions for the loss factor given by this theory by numerous investigators. |
(30,41,47 68). The loss factor determined using Zener thermoelastic theory was

previously given as

_ azET wT =

X
C (1+ o)z-tz) (6)

where a is the coefficient of therinal expansion, E is the bending sti{fness of the beam, T is
the absolute temperature, C is the heat capacity, w is the angular frequency and 1 is the
relaxation nime for the heat flow across a beam of rectangular cross section. The value of T

1s determined by

h’C
=
K o) i
where h is the beam thickness and K is the thermal conductivity of the beam material. The

values used for input to equations 6 and 7 for the determination of the damping loss facter

for the aluminum calibration specimen were obtained from the literature. The specific
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S el

Table 11: Experimentally determined vibration damping loss factor results for 2024 T-4

aluminum tested in cantilever beam configuration.

Loss Factor
Calculated Experimental Experimentally from Zener
Resonant Resonant Determined Average Thermoelastic
Frequency Frequency Loss Factor Loss Factor Theory
(Hz) (Hz) (x 104 (x 10%) (x 10
38.563082 19.66
38.85+1.40 38.57834 21.91 22.34 22.21
38.58244 25.45
49.0575 22.12
49.0637 21.99
49.0639 22.79
48.91+1.76 49.0684 20.29 22.74 22.94
49.0706 24.85
49.0909 23.02
49.5670 22.57
77.17365 20.30
77.18895 21.24
78.29+2.82 77.20165 18.52 20.23 20.70
77.2040 20.85
77.25243 20.25
80.1034 20.00
80.38+2.89 80.1891 21.28 20.54 20.04
£0.2002 10.99
80.2496 2().88
96.82+3.49 05.32% 18.44 18.52 18.62
96.47 18.60
197.2326 11.85
195.20+7.03 197.2516 11.35 11.09 10.90
197.1793 10.08
198.1793 9.84
199.73+7.19 198.2263 8.62 9.59 10.64
198.5398 10.31
219.628 8.28
223.9248.06 219.645 8.59 9.08 9.61
219.856 9.35
220.041 10.09
305.1664 8.00
312.08+11.24 305.1771 7.69 7.58 7.05
305.1800 5.83
305.1902 8.80
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values used are given in Table 12.

For each of the beam lengths used in the testing, the first resonant frequency was
analytically determined using equation 149. These results are compared with those
determined experimentally in Table 11. All of the experimental values of the first resonant

frequency are within experimental error for the analytically determined values.

Also given in Table 11 are the experimentally determined loss factors. For
comparison purposes, the anticipated loss factor of the specimens using Zener
thermoelastic theory are given. The experimental loss factors are within 2.5% of those
analytically anticipated for frequencies less than 196 Hz. At frequencies greater than

196 Hz., the experimental results were within 10% of those anticipated analytically.

Table 12: Input values used in equations 3 and 4 for the determination of the damping loss
factor for the aluminum calibration specimen using Zener thermoelastic theory.

r Input Coefficient | Bending | Temperature Heat Thermal ;
Parameter| of Thermal | Stiffness | (absolute) Capacity Conductivity
Expansion
Symbol o E T K
Value | 23.2X 106 { 73.097 298.72 2560511.2 126.47 .
(infm) GPa (oK) ( J ) ( kgm )
°K m° °K sec® °K b
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The results from the testing are plotied along with the analytical curve of the loss
factor from Zener thermoelastic theory in Figure 17. In this figure, the solid curve is the
analytically determined values of the loss factor using equations 6 and 7. A fourth order
curve fit was performed on the experimental data to determine the degree of fit of the testing
at frequencies between those at which tests were conducted. A plot of the curve fit, also -
given in Figure 17 shown by the dotted line, shows excellent agreement with the plot of the
analytically determined values of the loss factor. As can be seen from the plot, the curve fit
for the data matches the results predicted by Zener thermoelastic theory to within 2% in the

range for which data was taken.

The experimental apparatus that was designed for determination of the damping loss
factor for materials in the cantilever beam configuration accurately determines the damping
loss factor with a high degree of precision. Resonant frequencies deterined from curve
fitting of the frequency response function are within the error of the analytically determined

resonant frequencies. The variation in discrete values of the loss factor at a specific

frequency have varianons of less than 14% with the exception of the data at 312 Hz. where

the spread was 22%. The anticipated trends in loss facior for the 2024 T-4 aluminum are

determined to within 2% through appropriate curve fitting of the data compared to Zener

thermoelastic theory for frequencies from 38 1o 100 Hz, and less than £% for frequencies
between 100 and 312 Hz. Secondary sources of energy dissipation have therefore been

minimized.

Corrparison of these results to the calibration tests of other investigators should be

noicd. Typically, their calibration is performed at frequencies on the imonotonically
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144

decreasing portion of the analytical curve. In additicn, the range of fiequencies tested are
minimal, showing little variation in the mzagnitude of the loss factor with frequency.
Finally, the scatter in their da:a would indicate that the loss factor at the frequencices tested

are statistically equivalent.

An experimental technique has been designed and developed for determination of the
vibration damping loss factor of composites. The techrique utilizes a cantilever beamn
specimen oriented vertically 1o minimize eccentric type loads during vibration. An impulse
excitation is utilized, provided by an instrumented impact haramer. The beain response is
measured using a noncontact eddy current probe. Utilization of 2 Teflon impregnated glass
interface maicual beiween tie specimen and ihe ciamp block has becn shown 10 minimuze
frictional losses. Using a maximum torque of 10 ft-1b 0i the two bolts used to clamp the
specimen has been shown to result in consistznt loss factor results and causes no damage to
the specimen. The apparctus was calibrated using a well characterized maierial, 2024 T-4
aluminum. The results from the calibration testing produced results which were withir, 5%
of the analytically determined values using an appropriate curve fit to the data. The
variation in the loss factor at any specific frcquency tested was less than 14%, wih the
excepticn of the data at 312 Hz, where the spread was approximately 22%. The
experimentally determined resonant frequency using the curve fitting routine for the half
power bandwidth data reduction methodslogy was within 3% of the analytically determined

value. This apparatus was then utilized for the testing of the composite materiais for this

research.




Chapter 5
DEVELOPMENT OF A RCBUST TESTING METHODOLOGY

Two material systems were investigated as part of this research. These included S-2
glass/3501-6 epoxy and AS4 graphite/3501-6 epoxy. These two composite sysiems were
chosen because of their differences in material constituents. The fiber characteristics of the
graphite and glass are significantly different. The glass is an isotropic fiber whereas the
graphiie is highly anisotropic. Carbon fibers are composed of long ribbons of turbostratic
graphite oriented more or less in the fiber direction (73). These ribbons are grouped
together in stacks about 20 angstrom thick (73). The normals to the basal plane of the
stacks are randomly oriented perpendicular to the fiber axis, i.e., diffraction patterns of
carbon fibers have fiber texture. Consequently, carbon fibers have high stiffness and
strength only in the fiber direction, in which carbon-carbon covalent bonds can bear the
load. The terbostratic graphite ribbons are held together by van der Waals bonds, resulting

in low strength and stiffness transverse to the fiber axis.

All testing in this investigation is performed at room temperature, approximately

75° F. At room temperature, the polymer material is actually considered to be glassy.

Here, the amorphous chain conformations are frozen into a rigid network, yielding a high
modulus anc low loss facter (1). Although the loss factor is considered low compared
with that achievable in the glass transition region, these linear viscoelastic materials have

been showr to bave Inss factors more than an order of magnitude greater than structural
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metallic materials. When used in the composite form, even though the polymeric material
typically constitutes only about 40% of the composite by volume, the matrix marerial

should provide a significant contribution to the material damping loss factor. As such, the
polymeric materials used as the matrix for organic matri: compuosites can be considered to

have a high vibration damping loss factor. .

Material damping can be defined as any material characteristic which allows for the
conversion of mechanical energy into heat. In conventional metallic systerss, this energy
dissipation occurs through the relaxation of temperature across the specimen which is
caused by internal friction. For composite mzterials, there are numerous sources of energy
dissipation like the viscoelastic response of the material constituents, such as that found in

polymer systems, thermoelastic conversion of mechanical energy into heat, frictional losses

variations that result from the nonhomogeneous material characteristics of the composite.

Although polymer matrix composites are normally considered to be linearly
viscoelastic, most experimental investigations report loss factor for a specific iatenal or
laminate configuration without mention of the frequency at which the material was tested.
Through the investigation of the loss facwor as a function of frequency, the viscoelastic
characteristic of the glass and graphite fiber reinforced epoxy matrix composites is

determined.

In the previous chapter, the design and calibration of the test apparatus was

presented. In the initial investigation of the vibration damping testing of composites, it
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became evident that a modification to the data analysis procedure was required because of
the higher damping loss factor of the composites being tested. This chapter will discuss the
the details which made it necessary to modify the analysis procedure previously used to test
the 2024 T-4 aluminum. The proposed procedure that follows describes a methodology for
minimizing the effect of environmental sources of energy dissipation in order to provide a
morc accurate measure of the maternial loss factor. This procedure is being proposed as a
robust testing methodology for the vibration damping loss factor determination of

composite materials.

Composite Material Specimen Preparation

Two material systems were tested as part of this research. They were both obtained
in prepreg form from the Hercules Corp. All specimens were fabricated in-house using the
manufacturers recommended cure cycle using the autoclave vacuum bag procedure. This
process resuited in samples which had fiber volume fractions of 63%. The specific

procedures followed are included in Appendix D for the reader's information.

Machining of the specimens was performed using a diamond-impregnated cutoff
wheel mounted on a milling machine. This procedure was followed to minimize damage to
the composite specimens prior to testing. This is important since it has been previously
shown that any damage that may be present in the composite is a potential source of energy

dissipaton through friction that will occur at the interface (20-22,36). In addition. samples

were stored in a desiccant-filted enclosure in the interim between specimen fabrication and




testing. This was done to ensure that the samples were in the same moisture equilibrium

tate prior to testing.

nd Testing: Elastic Modul

In order to implement the analytical model to determine the loss factor of a general

laminated composite material, the material elastic constants and loss factors need to be

determined. To determine the elastic constants, there are conventional, well established
procedures which are typically utilized. Specifically, the ASTM test methodologies were
utilized. To determine E1, E3, V2, and v;1, unidirectional composite panels were made
having thicknesses as specified in the ASTM D3039-76 test procedure . After fabrication,
these panels were nondestructively inspected using a J.B. Engineering C-scan immersion
tank with software control being provided by Infometrics Test Pro system. In addition,
specimens were cut from the scrap ends of the fabricated plate and destructively tested to
determinc fiber and void volume fractions. To determine the fiber and void volume, a
different test procedure was necessary for the two composite materials used in this

program. For the AS4/3501-6 graphite epoxy, the ASTM D3171-76 Fiber Content of
Resin-Matrix Composites by Mawrix Digestion procedure was used on the tag end
specimens for each plate. For the S-2 glass/3501-6, the ASTM D2584-68 Ignition Loss of
Cured Reinforced Resins test procedure was used. In all cases, the fiber volume fraction

was approximately 63% with void content of less than 1%.

Specimens were cut to widths and lengths in accordance with ASTM D3039-76. The

specimens were instrumented with Micromeasurcments 0/90 strain gage ;, gage type
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EA-06-125TQ-350. These specimens were loaded in tension using a Baldwin Universal
Test machine using a cross head loading rate of 0.05 in/min. The strain/load information
was digitally recorded using a MewaByte Das-8 A-D data acguisition board installed in an
IBM PC. Ejis determined from the slope of the linear fit of the longitudinal stress vs.
strain response. To determine vy2, the longitudinal vs. transverse strain was graphed for

each specimen. A least squares lincar fit was then performed on each curve.

For determination of Ej and v33, the same procedure was utilized. In this case,
however, the unidirectional panel had its fibers oriented transverse to the loading direction.
Again, 0/90 strain gage rosettes were utilized so that both E and v7) could be determined.
These values were determinea using the same tost procedure and data analysis reduction as

was given above.

For determination of Gj2, the ASTM D3518-76 test procedure was followed. Here,
a + 45° specimen was fabricated and instrumented with the 0/90 strain gage rosertes. The
specimen is loaded in tension and the stress strain response recorded as previously
indicated. The shear strain is obtained from the difference in the longitudinal to transverse
strains and the shear stress is given as one-half the load divided by the cross sectional area
of the specimen. A linear fit is then performed on the initial portion of the shear stress

versus shear strain curve to determine Gp2.

The test results of the mechanical properties are given in Table 13. It should be noted
that the information presented is the average of 5 tests for each property indicated in the

table.




Table 13: Elastic properties of 8-2 Glass/3501-6 and AS4/3501-6

[MATERIAL| TEST METHOD | CONFIGURATION [ PROPERTY EXPEVRI{LMIIJEENTAL
AS4/3501-6 | ASTM D3039-76 (0], E, 20(31.3?
AS4/3501-6 | ASTM D3039-76 WA Vi 0.305
AS4/3501-6 | ASTM D3039-76 907, E, (1\475?,
AS4/3501-6 | ASTM D3039-76 907, Vos 0.0203
AS473501-6 | ASTM D3518-76 [£45]gq G, &i?)
$273501-6 | ASTM D3039-76 0], E; (%43;?)
S273501-6 | ASTM D3039-76 [0l Vi 0.264
S273501-6 | ASTM D3039-76 [90],, L, &8&%
5273561-6 | ASTM D3039-76 [901,, Va1 0.0913
$273501-6 | ASIM D3518-76 XX G, 0.835

(Msi)

loss modutlus can then be determined as

E,J () =n;()) E,J

The methodology that is used to detertnine the loss modulus of the composite is by

initialiy determining the material damping loss factor using the apparatus which was

where it should be noted that the siorage modulus is assumed to be independent of

frequency. Since it is also assumed chai the Poissons’ ratios are real and frequency

descrzbed in Chapter 4. Using the relationship previously given in equations 5 and 76. the
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independent, a complete characterization of the loss modulus is possible by determination
of M1, M2z and 1. This will be accomplished by utilizing 0° and 90° unidirectional beam

specimens and +45° angle-ply beam specimens.

The approximation for the vnidirectional specimens should be valid. For the
unidirectional specimens subjected to a berding moment, there is no in-plane shear strain
resultan:. Since the material is linearly viscoelastic, the material characteristics are
independent of siress or strain amplitude. As such, the strains occurring in the material are
the axial strain caused by the bending moment and the transverse strain which results from
the Poisson eftects. In addition, the axial modulus and the effective bending stiffness
detenined using eyuation 144 are equivalent. The difference in the two specimens is the
through-thickness shear strains that occur as a result of a bending moment which are absent
from an application of an axial load. Since the bending moment is small, due to the
restriction placed on the raaximum tip displacement allowed, the contribution to damping

will be assumed to be minimal.

For the +45° specimen subjected to a bending moment, axial and ransverse strains
are present in addition to the in-plane shear strains. As such, the loss factor determined
using this specimen has contributions from the varicus strain components. A more
accurate estmate of the in-plane shear loss modulus can be obtained, however, using the
experimental values of the loss factor determired using this specimen and the analytical
model which was developed in Chapter 3. As such, this specimen orientation is used to

obtain frequency dependent loss factor measurements. Details on the calculation of the

in-plane shear loss factor will be provided later in this chapter.




The testing methodology utilized for the loss factor determination of the 2024 T-4

aluminum specimen was initially utilized to determine the loss factor for the composite

materials. To summarize, this procedure utilized a cantilever beam specimen which was .

excited with an impulse excitation using an insorumented force hammer. The beam

response was measured using a noncontact eddy current probe. The data acquisition rate

was varied to be at a minimum 8 times the first resonant frequency of the specific beam

length tested. The beam tip displacement vs. time was digitally recorded using a PC based

A-D converter to a sample size of 2048 data points. The loss factor was then determined at

a particular frequency using the half power band width method.

The initial testing was conducted on the 90° S-2 glass/epoxy material. Five bearns

were utilized for each test length. The damping loss factor information was desired in the

frequency range up to 1000 Hz. Q.ly the first resonant frequency was utilized for loss

factor determination since it was unknown what effect the different modes of vibration

would have on the resultant loss factor. To obtain different frequencies to characterize the

frequency dependence of the damping loss factor using beams with the same width and

thickness, it was necessary to test beams of different length. To minimize sources of errors

in the determination of the loss factor, one set of beans was used for the entire series of

tests. After tests were conducted using a particular beam length, 1.e., a specific frequency,

they were cut to the next desired length ang tested.
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Initially, using the longer beam lengths, the beam response appeared similar to that of
the aluminum calibration specimen. However, as the beam length became shorter, on the
order of 5.0 in (12.7 mm), the beam displacement versus time response began to decay at a
much higher rate, an indication of the higher dumping loss factor of the specimen. In fact,
at this beam length, using a data accuisition rate of 10 times the first rescnant frequency of
the beam, the tip displacement became unmeasurable, or was within the noise of the

system, near the end of the data acquisition.

This type of decay in vibration amplitude to an unmeasurable value did not occur in
the calibration of the apparatus using the 2024 T-4 aluminum specimens. The displacement
vs. time curves that were analyzed typically had displacements which remained greater than
+0.002 in. for the complete data set being analyzed. For the composite specimens,
although the initial beam displacements were greater than thai of the aluminum, in many
cases the final beam displacements recorded were within the noise of the data acquisition
instrumentation, less that + 0.001 in. The reason for this is that the damping of the
composite specimens are significantly higher than that of the aluminum. The question that
arose was, " What effect does the incorporation of these nonmeasurable tip displacements

have on the determination of the damping loss factor ?"

This was addressed by comparing the loss factor which was calculated with and
without the incorporation of the very low amplitude vibratons. For the purpose of clarity,
the discussion that follows will be limited 1o the 11.0 and 5.0 in (27.9 and 12.7 cm) 90°
S-2 Glass/3501-6 beams.
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Figures 18 and 19 show the displacement vs. time information that was taken for
cantilever beams which had an unsupported test length of 11.0 and 5.0 in (27.9 and
12.7 cm). The data acquisition rate used for these two specimens was 250 and 1000 Hz.,
respectively. These rates were chosen since they are greater than § times the first resonant
frequency of the beams. The theoretical resonant frequency of the beams was 14.5 and -
70.1 Hz. The initial maximum tip displacement for both bearns are approximately the same
in both cases, about 0.023 in (0.6 mm). In each case, there are 2048 data points shown.
Because of the higher resonant frequency of 12.7 cm. beam, the time interval is much less
than the 27.9 cm. beam. As a pouiit of reference for each specimen, veriical lines have been

placed in Figures 18 and 19 which indicate the location of each 512 interval of data points.

In typical FFT analysis using conventional FFT analyzer equipment, the user can
control the sensors' input to the analyzer, but little else. The acquisition rate is
automancally controlled, as well as the number of data points that will be used for the FFT
analysis. In Figures 18 and 19, there is an obvious vaniation in the rate of decay of the
beam tip displacement from the first 312 interval to the last. 1t should also be noted that in
the case of the 5.0 in (12.7 cm) beam, the maximum tip displacement for the last 512 data

points is on the order of 0.0008 in (0.02 mm). In this range, the measured tip

displacemenis occurring from the vibration decay may be lost in the noise of the electronic

signal. If there is no decay in the tip displacement amplitude, the loss factor that would be
calculated using this data only would be zerc. This can be readily seer by considering the
loss factor as calculated using the log decrement method, given in equation 2. If this
porticn of the data is included in the calculation of the loss factor for the specimen, the
resultant average loss factor would be lower than the actual material loss factor. This

characteristic will later be shown to occur. This problem can be reduced by utilizing an
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Figure 18 Beam tip displacement vs. time for 11.0 in 90° S-2 Glass/3501-6.




:ﬁ-n.?f-mwm\«.:-, Feg T T T m e R o -'W‘ CNIWE S Ay, s -“;{%F.‘m VTR TR o R T e KFWEF‘?1TN_-‘1"#"%‘-"“"‘1F i L rrpKaT e oag

0.010

0.000 4f}»mi

Displacement {in)

TTTITITTTT I T 1T
10 1.5
Time (sec)

Figure 19 Beam tip displacement vs. time for 5.0 in 90° S-2 Glass/3501-6.
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increased data acquisition rate, so that the maximum number of data ponts can be used in
the FFT analysis. However, resolution is lost in doing this by reducing the capability to
zoom into an appropriate frequency interval so that an accurats characterization of the half

power band width can be obtained.

. Lzation of the Effect of Vibration Amplitude on Damping Loss F

Iniually, the damping loss factor for 5 specimens of cach beain length was determined
using 2048 data points using the procedure described in Chapter 4. Each data set was then ! |
divided into 4 subsets, containing the four successive 512 data points. The loss factor was
then determined using each of these 512 data points which made up the initial 2048 data
point set. The purpose of this exercise was to determine if the loss factor varied with tip
displacement. In each interval, the magnitude of the siresses that the beam is subjected to,
the frictional loss at the clamped end, and any variation in the aerodynamic damping will be

a function of tip displacement which may affect the calculated material loss factor.

Within each 512 interval, there is a decay in the beam tip displacement as a function
of time. For comparison purposes, it was decided to determine the maximum beam tip
displacement in each of these intervals. In the graphical presentations that follow, it is this

maximum value of tip displacement in ¢xch of these intervals which will be used.

Figure 2 shows the dB m-gnitude FFT vs. frequency for the 11 inch 90°

S-2 glass/3501-6. The fou: curves are the dB magnitude FFT for the four consecutive 512

data sets. The loss factor is detenmined directly from these curves. Several features are
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Figure 20 dB Magnitude FFT vs. frequency for four successive partitions of 512 tip
displacement vs. time data points given in Figure 18.
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evident. First, the first resonant frequency of the beam is evident by the large peak around

15 Hz. Secondly, the secend mode is evident on the first 512 data point sets at a

frequency of atcut 90 Hz but becumes unresolvable for the latter three sets. The reason for

this is that the higher modes have a higher loss factor, and they have been damped out in

. that ume interval. A third feature that shows up in all of the curves is a peak around 23 Hz.
This peak is due to the excitation of the fixture. This resonant frequency of the fixtuie was
determined following sirailar procedures as was given in Chapter 4. It is seen that the peak
at this frequency is very sharp, indicating that it contributes little tc the damping of the
specimen. This signal can be reduced but not 2liminated. The magnitude of this peak is
denendent on the amplituds of vibration of the specimen and the resonani frequency of the
specimen. As the resonant frequency of the specimen becomes further away from ihe
resonant frequency of the apparatus, the apparatus does noc become excited. For the
testing of the other specimen lengths, the peak height at 23 Hz was negligible. Even at this
low frequency, it shouli also be nouted that the respanse of the fixture does not overiap the
beam response. As such, it shou' 1 not affect the determination of the loss factor of the

composite sample (1).

Figure 21 s.iows the damping loss fa-tors determined using the procedure given \

. above for the five 11 in. (27.9 cm) specimens. Two distinct sets of data are shown. The
five individnal triangular points with loss factors of approximately 65 x10-* and tp

displacements greater than 0.02 in. are the loss factors that were determined using the half

power band width technique and ali 2048 tip displacement vs. time data points. The otiner

data points snown in Figure 21 are the ioss factors determincd for each successive 512 data

point set. The lines shown in Figure 21 are linear fits 10 the four successive 512 data point
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los: factors for each of the five specimens. It should be neted that these fines are
cxtrapolated to ze10 displacement. In addition, the dashed vertical lines in Figure 21
partition the figure into four sections, indicated by the numbers 1-4. Each interval indicates
the range of maximum tip displacements for each of the 512 data point sets for each of the

» specimens. For example, region 1 shows the range of the maximum tip displacements for

the first 512 recorded tip displacements of the five test samples.

Some significant results can be extracted from Figure 21. First, there is little
variation in the loss factor determined using all 2048 data points. It should be pointed out
that for all five specimens, the beam tip amplitude had oscillations which remained greater
than + (.002 in. for the entire data set. Second, for each specimen, the loss factor

determined using the first 512 data points of each specimen data set was greater than the

Joss factor determined using all 2048 data points. Third, the loss factors determined for a
given specimen using the four successive intervals decreased as the maximum amplitude of
vibration decreased. And finally, the loss factor ex'rapolated to zero displacement using the

four successive intervals is approximately equal to the loss factor determined using the

entire data point set. The average of the zero exirapolated loss factors from the five
specimens was 75.1 x 104, For the case where all 2048 daia displacement points are
utilized, the average value of the loss factor was 63.9 x 104, The reason that a difference

exists may be due to the resolutinn and accuracy of the data in the last 512 data point set.

For the 5.0 in (12.7 cm) beams, the same test and analysis procedure was utilized.
Figure 22 shows the calculated loss factors using 2048 and 512 data point sets. The various

features shown in Figure 22 are the same as those utilized in Figure 21. Many of the same



162

200
j -
i
TN 1
¥ 1504
- i
N 1 3 2 E
N I I I
\X/ 1 Mo I /’T I
. ]OO N |" o ,_,_—'——-"“'"—'M & |
O N ! .
—+- N o 1 ! i {
O 4
S 10 ; I
Lo S I I | £ ‘4
s IR A l
»n V7, |
o . bl ! | |
) 10 , |
| |
— 1 |
J
N | !
I
Oq*r"rl—l—l"!_‘r‘lT—l"T—rﬁ_‘:rIllIl‘|ﬁlﬁl||1lTl|l L LI AL AL S
0.000 0.010 0.020 0.030 C.040

Max. Tip Deflection (in)

/

Figure 22 Loss factor vs. maximum tip displacement for successive partitions of 512 tip
displacement vs. time data points for five 5.0 in specimers.




163

characteristics shown to occur for the 11.0 in (27.9 cm) specimen are also shown to occur
for the 5.0 in (12.7 cm) specimen. First, there is a variation in loss factor with beam tip
displacemeru as seen using the loss factors deiermined in the successive 512 daia point
sets. For this beam length, however, there is less of a decrease in loss factor as the
amplitude of vibration decreases. It should be noted that it was not possible tc resolve a
peak in the dB magnitude FFT vs. frequency curves for the fourth 512 data point interval
of any of the 5.0 in. specimen data sets. If a loss factor was determined using the log
decrement method, the resultant loss factor would be very low. The loss factor determined
using all 2048 data points is significantly lower than the zero extrapolated loss factor, 65.0
x 104 versus 84.6 x 10-4. This shows that the incorporation of displacement information
which becomes masked by the noise of the acquisition system, or has virtually come to

rest, has the effect of lowering the value determined for the loss factor.

It should be noted that for the 5.0 in (12. ' cm) beams, the acquisition rate used was
approximately 14 times the first resonant frequency. Even at this acquisition rate, the
beam displacements for the last 512 data points of a 2048 set were on the order of the
resolution of the sensor. This shows that as the resonant frequency of the beam is
increased, the acquisition rate should be increased nonlinearly so that tip displacements are
significantly greater than the sensor resolution over the entire 2048 data set. This will

provide a2 more accurate description of the beam tip displacement history.

Similar findings were obtained for the series $-2 Glass/3501-6 90 degree beams
tested for this investigation with lengths ranging down 0 2.0 in.(5.0 cm). In all cases, the

loss factor determined using the sets of 2048 data points resulted in loss factors that were
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significantly lower than the zero extrapolated loss factor using the methodology described
ahove. Again, this result occurred due to the incorporation of the displacement information

which was within the noise of the data acquisition system.

A Proposed Robust Testing Methodology for th Factor Determinati i

The finding of the variation in loss factor as a function of tip displacement amplitude
has significant ramifications. In vibration testing that is normally performed to determine
the damping loss factor of materials, care is taken to ensure that all extemal sources of
energy dissipation are minimized. The magnitude of the damping provided by these
sources is, however, difficult if not impossible to determine and eliminate. In general,
then, the loss factor determined using any of the methodologies discussed in chapter 2 will
be the summation of the material ioss factor and the environmental losses associated with

the test itself.

In addition, 1t has been shown that it is nccessary to determine the applicability of the

displacement information prior to performing data reductions for loss factor determination.
Incorporation of near zero displacement information, or displacements that are on the same
order of magnitude as the noise of the system, has the effect of lowering the calculated
value of the loss factor. This occurs because of the effective averaging of this loss factor
with the losses that occur at the larger more resolvable displacements. Another reason for
errors occurring when the near zero displacernents are included in the determination of the
damping loss factor is due to the relationship of the magnitude of the tip displacements

relative to the sensitivity of the sensors measuring the beam tip displacements. For large
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beam displacements, on the order of +0.010 in. (+0.25 mm), and a sensor resolution of
+0.0001 in (+0.0025 mm), tip displacements have an error of + 1%. However, when tip
displacements are on the order of +0.001, the sensitivity of the sensor does not change. In
this case there is an associated error of +10%. This is in addition to the other sources of

error that can arise in the instrumentation, such as noise.

This phenomenon has been observed by other researchers investigating the vibration
damping of composites. Hoa and Qullette(49) conducted an investigation on the effect of
microstrain on the damping loss factor of hybrid composite beams. The beams were given
an initial step excitation followed by a free decay. The loss factor was measured using the
log decrement test methodology. Th= results of their testing are shown in Figure 23.
Although they attribute the decrease in the calculated loss factor to the decrease in the strain
or amplitude of vibration, it may be the result of the sensiuvity of their instrumentation as

was described above.

Based on the results described above, a robust =sting methodology for determination
of the material loss factor of composites is proposed. First, a well designed apparatus is
required which is calibrated using a well characterized test specimen. The apparatus
described in Chapter 4 is an example of such a system. The magnitude of the beam tip
displacement vs. time rnust remain greater than the noise and resolution of the sensor and
data acquisition system. As such, the data needs to be visually or numerically interrogatec
to insure that this condition is met. If not, then a possibility exists that the resultant loss
factor will be lower than the actual material loss factor. If displacements over the time

interval which are utilized in the FFT are aliowed to become smalier than 0.001 in.




(0.025 mm) for more than 25% of the displacement vs. time curve, the loss factor thatis

calculated appears to be lower than the actval material loss factor.
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Figure 23: Loss Factor vs.MicroStain for (O¢;)2/(45k.)3/(Og,); (after Hoa & Qullere(49))
The displacement versus tinae data should then be partitioned into 512 data point

intervals. A Fourier transform should be performed on each data set and loss factor

determined using the half power band width method. The maximum tip displacement in

each set should then be determined  The loss factor as a funcrion of this tip displacement
should then be plotted. A least squares fit should be pertormed on the data, with an

extrapolation being made to zero displaceraent. This is done in ar: attempt te elimnate
¢xtraneous source of energy dissipation. As the beam's tip displacements increase, various

sources of energy dissipation can occur. Thie extrapolation to zero displacerent should ;
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reduce the extraneous losses, providing a more robust testing protocol. In addition, it 1s
hypothesized that the loss factors that result are more representative of that which would be
experienced by an actual structure since, in the majority of cases, displaceinents are smail
and/or the structures are restrained from experiencing large displacements. This testing
methodology should provide increased accuracy and precision for the determination of the

damping loss factor of materials.




Chapter 6

S-2 GLASS/3501-6 AND AS4/35031-6 DAMPINC LOSS FACTOR DETERMINATION

In Chapter 5, a robust testing methodolcgy for the dctermination of the material
dampirg loss factor determination of composites was presented. This testing procednre
provides an accurate measure of the material loss factor of coruposites. This testing
methodology was utilized to determine the damping loss factor of S-2 Glass/3501-6 and
AS4/3501-6 glass and graphite composites. The damping loss fucior testing is being
conducted to proviue the input required t¢ «he analytical medel developed in Chapter 3 for
the determination of the damping loss factor of gencra! laminated composites made with

these two composite systems.

The epoxy matri< used in this investigation is a viscoelastic material. Although the
fibers are assumed to be elastic, the composite response is expected to be viscoelastic.
Consequently, the loss factor for the composite is expected to be a function of frequency.
To properly characterize the composite, then, it is necessary to determine the loss factor at
various frequencies, i.e. beam lengths. The material ioss factors that are required for the
analytical model are Ny, My7, and 1y5. This chapter will present the results of the testing

conducted on the composite materials using the robust test procedure given in Chapter 5.

In addition, methodology is presented for analytically determining an accurate

168
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estimate of 1, using the experimental results and analytical model. In addition, a
discussiun is presentec on the validity of the assumptions made on the Poisson's ratios

being real and independent of frequency.

All composite specimens were tested using the methodology given in Chapter 5. In
summary, the composite materials manufactured in this research were machined to the
desired beam length. A specimen was placed into the clamping fixture with the
fiberglass-reinforczd Teflon pieces placed between the specimen and the movable clamp
block. The clamp block bolts were tightened to a torque of 10 ft-1b. The eddy current
probe was then positioned, centered approximately 0.5 in. from the end of the beam. The
resonant frequency was calculated and the desired acquisition rate chosen, which was at
least 8 times the first resonant frequency of the beam. The data acquisition program was
then run. The specimen was excited with un impulse near the clamped end of the
specimen. The displacement and force versus time information was stored for later
manipulation. The size of the data set was reduced to 2048 data points. This information
was then read into ILS and stored with a record size of both 2048 and 512 data points. An
FFT was performed on the data and stored as a file. The stored FFT files were then input
into the graphics routine, Grapher, where a fourth order curve fit of each side of the first
resonant peak was determined. The orthogonal coefficients and the alpha and beta
recursion numbers were then input into a file. These files were then used as inputto a
basic computer program which computed the intersection of the two curves, the resonant

frequency and the half power points. For each specimen, the maxinoum displacement in the
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512 data point sets and the appropriate loss factors were stored as a data tile. This data file )
was then used as input to the graphics routine, Grapher. A linear fit was then performed
for each specimen, extrapolating the curve to zero displacement. These zero displacement
extrapolated loss factor values with the appropriate frequency were then input into a file

which is used to characterize the frequency dependence of the damping loss factor. -

The specimen configurations tested included 0°, 90° and + 45° for both the $-2 glass
and AS4 graphiie epoxy systems. The beam lengths were chosen so that the ﬁ_rst resonant
frequency would be between 10 and 1000 Hz. To properly characterize the frequency
response of the material in the frequency range of 10 to 1000 Hz., a series of beam lengths
had to be chosen so thai their first resonant frequency was in this interval. The lengths
were chosen so that the loss factor at approxirnately 100 Hz intervals could be determined.
There were some restrictions on beam length that were imposed by the specific apparatus.
The longest bzam length that could be tested was 12 in. (30.5 cm). This resultsin a
different lower bound for the lowest first resonant frequency for different materiai
configuraticns tested. For given beam dimensions, the effective bending stiffness of the
beam will govern the beam response, as was shown previously by equation 149. In
addition, the shortest beam tested had to have a minimum of 20:1 length to thickness ratio
in order to minimize the effects of shear and rotary inertia corrections to the damping loss
factor determination (1). The results of the testing are shown in graphical formin

Figures 24-29. The specific information for each beam lergth is also given in tabulated

formin Appendix E.
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For a typical resonant frequency, the zero displacement extrapolated loss factor has
soine interesting characteristics. First, for a given beam length, there appears to be a
variation in the rate of decay in loss factor as a function of the maximum displacement.

This may occur as the result of material variations from specimen to specimen. Any
material anomaly within the specimen, such as fiber waviness or fiber misorientation, that
are possible sources of energy dissipation are minimized when displacements are smail. As
the displacements are increased, the energy dissipation caused by these material anomalies
shouid also increase. In addition, a scatter in the experimentally determined resonant
frequency occurs, the result of minor variations in beam length within one data set. This
variation in beam length may also affect the loss factors. These characteristics are evident

in the results presented in Figures 21 and 22.

Another interesting characteristic of the zero displacement extrapolated loss factor
curves is the variation in their slope as a function of beam length, or frequency. This
variation in slepe may be the result of a change in stress distribution in the composite
material or it may be the result of the viscoelastic character of the matrix. It may also be the
result of a variation in aerodynamic damping as a function of frequency. Some
investigators have indicated that the aerodynamic damping is a function of the velocity of
the beam center of gravity (74,75). As the resonant frequency is increased for a given
amplitude of vibration, there is an associated increase in velocity of the center of gravity of

the specimen.

In order to extrapolate the values of the material loss factors of the .wo material

systems in the range of frequencies up to 1000 Hz, the experimental values were curve fit.
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For the 90° beam configuration, there were two curve fits used on the experimental data: a

logarithmic fit and a linear fit. The best fit to the experimental data, determined using a

least squares approach, was the logarithmic fit. It will be shown later in this chapter that

the epoxy resin system also possesses a logarithmic {requency dependence of the loss

factor. The similarity in the frequency dependence of the loss factor between the 90° -
composite beam and the unreinforced resin is expected, since a composite with a 90°

orientation will possess matrix dominated characteristics.

A mechanical analogue that can be used to approximate the response of the 0°
orientation would be the Voigt-Kelvin model of the spring dashpot in parallel. In this
model, the loss factor should be directly proportional to the loss factor of the matrix. Since
the loss factor of the matrix possesses a logarithmic dependence with frequency, it is
assumed that a logarithmic fit would most accurately describe the frequency dependence of
the (° orientation. Because of the nonuniform trends in the loss factor as a function of
frequency for this orientation, a logarithmic and linear fit were again used to fit the data.

The best fit to the experimental data, determined using a least squares approach, was the

linear fit. It should be pointed out that the variation in the two fits was minimal. Since the
linear fit provided the most accurate description of the data, this is the fit that will be used to
extrapolate the loss faciors in the frequency range up to 1000 Hz. For an extrapolation
outside this range, the loganthmic fit should provide the most accurate representation of the

frequency dependence of the loss factor.

For the +45° beams, two different approximations were used. For the S-2

glass/epoxy, the experimertal data was fit using logarithmic and linear approximaiions.
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The curve fit that provided the most accurate representation of the data, again based on a
least squares analysis, was the logarithmic fit. The logarithmic form should be from a
physical standpoint. The +45° configuration in bending will experience in-plane shear
stresses along with in-plane normal stresses. The shear characteristics of the composite are
dominated by the shear characteristics of the resin. As such, it is anticipated that the loss

factor ci:2racteristics of this configuration should parallel that of the resin.

The +45° AS4/3501-6 material showed trends that were not anticipated. As such, a
polynoniial fit was used to approximate the data. Although the loss factor values at low
frequency were very reproducible, the low frequency values are still questionable.
However, in order 1o determine trends in the frequency range up to 1000 Hz., the third

order polynomial fit will be utilized.

The curve fits that were obtained for the specific maierial and orientation are given as

follows:

0° glass M = 5.1476 x 107 f + 5.98698 x 10-3 (152)
90° glass N2 = 8.37194 x 104 In(f) + 4.06544 x 10-3 (153)
+45° glass N2 = 2.08645 x 10-3 In(f) - 2.95132 x 103 (154)
0° graphite Ny = 2.44682 x 10-6 f + 3.56884 x 113 (155)
9C° graphite N2 = 1.87469 x 10-4 In(f) + 5.42504 x 10-3 (156)

+ 45° graphite MN12 = third order polynomial with orthogonal coefficients of the form
given in equation 147 where the orthogonal and recursion

factors are given as (157)
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ag = 70.925 x 104 ap =0 By =0
aj =7.94784 x 104 oy = -0.715559 B, = 1.86312
2y = 6.68701 x 10-4 0y = 0.503032 Py = 1.0759
a3 =-2.87757 x 104 oy = 0.202372 B4 = 0.962746

A statistical analysis of the curve fits was conduct: ! using the Student t analysis
method. For the comparison of the loss factors, the t distribution was used as the basis to
determine if the difference between two means is significant or due to random variations in

the data. For this analysis, the pooled variance, Szp, and the standard deviation of the

difference in means, S(X2_xl), were determined. The pooled variance is given by

S2

where n; and nj are the number of samples in the data set and $2,; and S2,, are the
standard deviations for sample sets 1 and 2 respectively. The siandard deviation of the

difference ir means is given as

SR (159)
The statistic t is then computed as

lxz"xll

(2%, (160)

The value of t determined in equation 160 was then compared to the value of (o) given in a
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Student's t distribution for d degrees of freedom table given in reference 76. From this
table, a degree of confidence was detenmined for each successive mean frequency. The
statistical information generated using equations 158-160 are presented in Appendix F.
The results can be sutnmarized as follows; there is at least a 95% confidence that the data at
each frequency is significantly different from the previous frequency. The curves that were

generated to indicate the trends in the loss factor as a function of frequency are significant.

In addition to the damping loss factor characterization for the composite material,
characterization of the loss factor of a similar matrix system was also performed. The
matrix material used in this portion of the dissertation was a 350° F epoxy from the Narmco
Division of BASF, which they designate 5208. The Hercules Corp. 3501-6 resin was not
tested because it was not sold in bulk form. The characterization of the damping loss factor
of the matrix will provide an additional check of the iest procedure. The testing procedure
used was the robust testing methodology given in Chapter 5. A summary of the results of
the testing are picsented in Figure 30. The specific loss factors for the various beam
lengths are presented in Appendix G. In general, Figure 30 shows that the resin possesses
similar damping loss factor characteristics to the composite materials. The loss factor
exhibits a logarithmic increase with increasing frequency. The logarithinic curve fit shown

in Figure 30 is given as

Ny = 28.13 x 104 In(f) + 72.53 x 104 (161)
m

It should also be noted that the magnitude and frequency dependence of the loss factor
determined herein showed trends that were similar in magnitude and shape to another 350°

F cure epoxy, 934 epoxy made by the Fiberite Division of ICI (64).
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As a further comparison of the loss factor of the resin to that of the composite \
systems, th: loss factor of the composite is divided by the loss factor of the resin, and this
normalized loss factor is graphed as a function of frequency for the §-2 glass/epoxy
material for the 90°, 0° and the & 45° ornientations. These arc shown .n Figures 31, 32 and
33, respectively. This normalization allows easy visualization of the effect of the fiber on L
the loss factor of the composites. For the 90° orientation, the normalized loss factor is
linear at frequencies above approximately S0 Hz. Since the 90° orientation is matrix
dominated, it would be assumed that the loss factor should be linearly proportional to the
resin. It 1s interesting to note that the volume friaction of the resin is approximately 40%.
The normalized loss factor of the S-2 Glass/3501-6 in the 90° orientation is also
approximately 40%. This would indicate that an estimate of the loss factor of a polymer in

1ts glassy 1egion can be obuined by using a simple rule of mixtures approach. w

For the 0° orientation, the normalized loss factor decreases with increasing frequency.
This characteristic is reasonable since the composite in this configuratior is fiber dominaied
and will respond more elastically than as a visccelastic. As the frequency is increased, the »
viscoelastic characteristic of the martrix becomes more elastic also, thercby resulung in a

slight decrease in loss factor with increasing frequency.

The normalized loss factor for the + 45° orientation exhibits an increase with
increusing frequency. The normalized loss factor for the + 45° orientation is also seen to be
greater than that of the 90° orientation. This result is probably due to the in-plane shear

strains that are present in the + 45° specimens and which are not prcsent with the 90°

specimens. Since the dominant mode of energy dissipation by a viscoelastic is through
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shear, it is reasonable that the + 45° normalized loss factor increases with increasing

frequency.
Analytical Determination of nj7
It should be recalled that the shear loss factors of the composites were estimated using N

a + 45° beam specimen. For this specimen orientation, the application of a bending moment
results in a combiration of longitudinal, transverse and shear in plane stresses. The
assumption that the loss factor of the + 45° beam specimen is equal to the shear loss factor,
TNy, is therefore in error. The loss factor that is determined using this specimen is actually

the summation of the losses atmibutable to the these stresses.

It is possible, however, :0 determine the shear loss factor of the composite using
experimental values of the loss factor of the + 45° specimen. This is done by using the
proposed analytical model along with the longitudinal and transverse loss factors that were
experimentally determined. One of the test frequencies of the + 45° specimen is first
chosen. The values of 1;; and 1y, are then detcrmined for this frequency using equations
152 and 153. An estimated value of 15 is chusen. The values of 7j, N2, and My, are
then used as inputs for the model described in Chapter 3 to analytically determine the loss
tactor for the +45° specimen. The value of 15 is adjusted until the predicted and

experimental values of the loss factor for the + 45° specimen are within 0.1%. This value

of My, is then taken to be the loss factor in shear for the materiai.
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To determine 12, the analytical model was programmed using the symbolic
manipulator program, Mathmaticay. The complex moduli Eq* and Ez” that were used as
input for the model are those given in equations 152 and 153 for the S-2 Glass/3501-6 and
by equations 155 and 156 for the AS§4/3501-6. The program uses these complex moduli to
determine the values of the ABD matrix. The various terms for the reduced stiffnesses are -
complex. As such, conventional laminated plate theory routines would not be able to
perform the manipulations required by the model. The inverse ABD matrix is then
determined. This operation, although straightforward for the symbolic manipulator
program, Mathmaticayy, , is quite difficult to perform either by hand or using conventional
computer algorithms. Since the +45° specimen is subjected to a bending moment, the loss
factor is determired using the equation for the effective bending stiffness, equation 146.
This calculated value of 1| 445 is then compared with the experimental value. The estimated
value of 117 was then increased or decreased based on the analytically determined value of
N.44s. This iterative process was continued until the estimated value of 112 in the analytical

model gave results that were within 0.1% of the experimental value.

Thus process was used to determine the value of 12 from 50 1o 1000 Hz. The results
of this analysis are given in Table 14. The results are also presented in graphical format in
Figure 34. Tt should be noted thai the loss factor that was experimentally obtained for the
+ 45° specimen is slightly lower than the estimated shear loss factor. These results are
consistent with current thinking of energy dissipation of viscoelastic materials. The

predominant source of energy dissipation in a viscoelastic material is in shear. Since the

+ 45° specimen is not in a state of pure shear, the loss factor calculated should be less than

the shear loss factor.
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Table 14 : Determinatios: of 112 using Experimental Values of 111, 1122, and 1445 for §-2
Glass/3501-6.

Frequency i 2 N2 Ti+4s MOdel | 1,45 Cxperimental
(Hz) x10Y | x10% I x10% (x 109 (x 104)
50 60.13 73.41 49.24 52.11 52.11
70 60.23 76.22 57.90 59.13 59.13
100 60.38 79.21 67.07 66.57 66.57
200 60.90 85.01 84.86 81.03 81.03
300 61.41 88.41 95.22 89.49 86.49
400 61.93 90.81 102.55 95.50 95.50
500 62.44 92.68 108.20 100.15 100.15
600 62.96 94.21 112.81 103.96 103.96
700 63.47 95.50 116.69 107.18 107.17
800 63.99 96.62 120.03 109.96 109.96
900 64.50 97.60 122.96 112.41 112.41
1000 65.02 98.49 125.58 114.61 114.61

This same procedure was used to analytically determine the shear loss factor for the
AS4/3501-6 material. Similar results occurred. The calculated value of 11, was greater
than the experimental value obtained using the +45° specimen. The results from this
procedure are given in Table 15. Figure 35 shows the comparison graphically between M.45
and Myy. It should be noted in this comparison, the curve fit for the calculated value of 0},
is determined for frequencies greater than 50 Hz only. The reason for this is that the
experimental results for frequencies less than 50 Hz cannot be phenomenologically
explained. In addition, it should be noted that the estimated val= of 1y, would not be

expected to continue to increase at higher and higher frequencies. Instead, this value should

reach some upper limit asymptotically, similar to the curve generated for the loss
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Table 15 : Determination of 117 using Experimental Values of 111, 1122, and 1445 for
AS4/3501-6.

Frenuency nn 2 2 Tqs Model ¢ 7, 4 experimental
(Hz) x10YH | x104) | (x104) (x 10%) (x 104)
50.81 36.93 61.61 102.07 93.94 93.94
73.74 37.49 62.31 67.67 64.03 64.02
117.44 38.56 63.19 56.58 54.50 54.49

21442 40.93 64.31 53.59 52.18 52.18
317.10 43.45 65.02 61.49 59.37 59.37
441.12 46.48 65.67 62.99 61.05 61.05

factor of the resin. As such, there is a limitation on the validity of the estimated value of

712 to be limited to the frequency range of 50 to 1000 Hz.

The frequency dependence of 112 is then determined for both material sysiems by
performing a curve fit to the analytically determined values given in Tables 14 and 15. The

equations that describe the loss factor as a function of frequency are given as follows

M1 25105 = 25-4998 x 104 In(f) - 50.371 x 104 (161)

M2Graphite = second order polynomial with orthogonal coefficients of

the form given in equation 147 where the orthogonal and
recursion factors are given as

= 58.6615 x 10'4 a; = 0 Bl =0
aj = 2.06069 x 104 o = -0.0835392 B, = 2.20824
ay=0.441874 x 104 a3 = 0.120602 B3 = 1.45132 (162)

Throughout the remairder of this report, the shear loss factors for the materials given by

cquations 161 and 162 will be utilized.
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Determination of 117, and 1, for S-2 Glass/3501-6 using Micromechanical Model

An investigation was performed to determine the accuracy of the micromechanical
models for predicting the lamina loss factors of composites. The analytical model
developed by Hashin that was described in Chaptei 2 will be used The material
information required by the model are the matrix frequency dependent loss factor, the axial '_ )
and shear modulus of the fiber and resin, and the matrix volume fraction. The shear
properties of the fiber and matrix were approximated using the relationship of the axial to :
shear modulus for isotropic materials. All other values used for this exercise were
experimentally determined. Table 16 lists the specific input values used in the analytical

model.

Table 16 Material Property Input for Micromechanicai Model

Matenal Volume Fraction Shear Modulus Axial Modulus
(%) (x 100 psi) (x 100 psi)
S-2 Glass 63 4.77 12.4
Epoxy 37 0.2 0.5

The micromechanical model developed by Hashin provides a methodology for

determining the in-plane axial, 11y;, and shear, 117, loss factors as a function of the

materials properties given in Table 16. The equations used are given below as

My =

Mm
E; vy
TE

mVm

(163)
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G 2 G
Nm Vi (-G; + 1) + vy (a‘;—l)

e Gy
G—(1+vf)+vm .C—;—vm+(1+vf)

m m

(164) .

where M, is the loss factor of the resin, Eg and E;, are the axial moduli of the fiber and
matrix, respectively, Gy and G, are the shear moduli of the fiber and matrix, respectively

and vg and vy, are the volume fraction of the fiber and matrix in the composite, respectively.

The axial and shear loss factors as a function of frequency determined using
equations 163 and 164 are shown graphically in figures 36 and 37, respectively. Also
included in these figures are the experimental results obtained for the cortesponding

composiie beams.

The micromechanical analytical determination of 1y is significantly lower than
the experimental values obtained over the entire frequency range. One possible explanation
for this is that the analytical model fails to take into consideration the shear at the fiber
matrix interface. Any shear deformation in the matrix would result in a significant increase
in loss facter of the systern. Another possibie explanation 1s that the matrix material near
the fiber has different material characteristics than the bulk matrix. It has been proposed by
numerous investigators that this interphase region of the matrix occurs in an area which is a
fraction of the fiber diameter around the fiber. This material can possess a glass transition
temperature which is lower than the bulk matrix, which results in a frequency dependent .

loss factor that is different than the bulk marrix. These two conditions would have the

effect of increasing the tuss factor of the composite. As such, it is not surprising that the
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experimentally determined loss factor is greater than the analytical value.

The analytical determination of 1155 using the Hashin micromechanical model is
shown to give results that are approximatcly a factor of two greater than the experimentally
determined values in the frequancy range up to 1000 Hz, as seen in Figure 37. The
micromechanical model assumes that the composite shear loss factor is directly proportional
to the loss factor of the matrix. This appears to be an accurate general description of the
composite shear loss factor since the general form of the expenimentally dctermined shear
loss factor for both the matrix and composite have a logarithmic frequency dependence. In
the micromechanical model determination of 1y, for the S-2 Glass/3501-6, however, the
effective constant of proportionality, determined using Equation 104, is approximately
0.85. If this constant of proportionality was approximately 0.43, the micromechanical
mode! wonld provide an accurate approximation of the shear loss factor for the S-2
Glass/epoxy system. It should be noted that this constant of proportionality is greater than
the volume fraction of the matrix, which was determined to be 37%, making a simpie rme
of mixtures approach inappropriate. The fa<t that the value of 11y is greater than a rule of
mixture prediction seems appropriate since no consideration is given for any shear at the
fiber matrix interface. To account for this, the incorporation of some form of relationship
between the fiber and matrix shear modulus would seem appropriate. It appears that the

specific form used by Hashin should be modified in order to provide a more accurate v

determination of the shear loss factor of composites.




In the development of the analyticil model given in Chapter 3, two assumptions were
made concerning the Poisson’s ratios: (1) they are real; aud (2) they are incependent of
frequency. A contradiction arises when these assumpuions are enforced with the reciprocity .
relation. For a maierial subjected to a set of forces, considering the work done by these
forces and by utilizing the Maxwell-Betti Reciprocal Theorem along with some simple

mathematical manipulations results in the generation of the reciprecity relation

V12 VU

E, B (163)

This same relation will hold in complex notation, by utilizing ihe elastic visceelastic
correspondence principle. As such, the corresponding relationship beiween the elastic
macduli and Poisson’s ratios will be given as
. .
Dz D2,
E E (164)
In the model presented in Chapter 3, substituting the assumptions on Poisson’s ratio intc

equation 164 yields

Uy :sz
E, K (165)

Since whe real part of the complex modulus is assumed to be real, equation 165 yiclds the .

result that the frequency dependence is the sime for both the axial and transverse moduli.




Experimentally, this does not occur. This indicates the possible need to incorporate a

frequency dependence and al-o possibly assume that the Poisson’s ratios are complex.

The reason the Poisson's ratios were assumed to real and independent of frequency

was the lack of experimental procedure to determine these values. Some assumptions can

be made, however, in an attempt to analytically determine them using the complex moduli

which have been experimentally determined. By definition, v, is the negative of the ratio

of the strain in the 1 direction to the strain in the 2 direction that occurs from the loading of

the specimen in the 2 direction. Upon application of a load in the 2 direction, 1.e. an axial

extension of a2 90° specimen, there will be an extension of the material in that direction.

Since the matenal is viscoelastic, this strain will lag the load. As the material is elongated

in the 2 direction, there will be a contraction of the material in the 1 direction. Since this

direction is fiber dominated, an assumption will be made that this strain is in phase with the

strain in the 2 direction. From this assumption, it is seen that v, is real. Since the

assumption is made that there is no lag in strain, there should also be no frequency

dependence.

Using the approximation that vy, is real and independent of frequency, v*y; can be

determined using the complex reciprocity relation given in equation 164. It should be noted

that v*y, is assumed to be complex and a function of frequency. Rearranging terms, v*(,

can be given as
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Using the relationship for the Poisson's ratios given in equation 166, then, the reciprocity

relation is maintained.

A sensitivity study was conducted to determine the significance of assmning that all
Poisson's ratios are real and frequency independent compared with the results that are
obtained using equation 166. The Q"ij were determined using the complex frequency
dependent v*}; given in equation 166 and the value of v, determined from the
experimental investigation. These values were determined at 50 and 1000 Hz to obtain the
range of variation in these values. In all cases, the maximum difference in the real and
imaginary terms of the Q'ij, which occurs at 1000 Hz, were less than 1.5%. These values
are therefore well within the experimental accuracy of the testing procedure. As such, there
will only be an insignificant variation in the resulting solutions employing the assumption
that the Poisson's ratios are real and frequency independent. This assumpiion has therefore

been shown to be applicable to this material system.

Some general comments can be made about the information that can now be generated
using the analytical model given in Chapter 3. A complete characterization of the damping
loss factor as a function of frequency has never been reported in the literature. As such, the
analytical determination of the loss factor of a general laminated composite over a given
frequency range was never determined. This model has the utility of being able to
determine the effect of stress couplings on the loss factor. It has been proposed by some

investigators that the difference in loss factor as a function of fiber orientation between the
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off-axis and angle-ply laminates is due to the stress coupling terms. These stress couplings
should then lend themselves to loss factors which are higher than that achievable in pure
shear. For an angle-ply composite, the material is balanced and symmetric, which results
in minimal values of D¢ anc Dyg, i.c. minimal swess coupling effects. For the off-axis
configuration, however, since the material is unbalanced, significant stress couplings are
present. The loss factor determined for the off-axis configuration has a peak at an
orientation of approximately 30°, whereas the angle-ply configuration shows a loss factor
maximum at a fiber orientation of approximately + 45°, as seen in Figures 5 and 6.
Calculating the magnitude of the coupling terms D16 and D2g, a peak occurs at a fiber
orientation of approximately 30°. This gives the intuitive indication that the loss factor of a
general laminated composite can be greater than the material's shear loss factor, by taking
advantage of the flexibility in material design. It should be pointed out the loss factor
information presented in Figures 5 and 6 were not determined at the same frequency for all

orientations.

The loss factors in bending of 16 ply angle-ply and off-axis S-2 glass/3501-6 beams
were analytically determined over a frequency range of 50 to 1000 Hz. The fiber
orientaticns used were from 0° to 90° in increments of 15°. The model was used to
analyticaily determine the complex inverse ABD matrix for each orientation and at
frequencies of 50 Hz and from 100 to 1000 Hz in increments of 100 Hz. The loss factor

was then determined using the D-1;; term in equation 146. The results from this modeling

are presented in Figures 38 and 39 for the angle-ply and off-axis material, respectively.
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Several results are evident by comparing the loss factors as a function of fiber
orientation for these two configuratious. The major difference in the two configurations is
that the off-axis configuration has significant stress couplings because it is unbalanced.
The first obvious difference in the two configurations is that the loss factor for a specific
orientation over the entire frequency range is greater for the off-axis orientation with the v
exception of the 0° and 90° orientations where the loss factors are identical. Secondly, the
effeci of the stress coupling on loss factor . more pronounced for the 15° and 30°
orientations then any of the other configurations. At a frequency of 1000 Hz, the 15°
off-axis loss factor was 28.5% greater than the angle-ply loss factor, while the 30° off-axis
loss factor was 24.8% greater than the angle-ply loss factor. This increase is attributed
solely to the stress coupling terms. Third, the ranking of the loss factors as a function of
material fiber orientation is different in the two configurations, as is evident in the

magnitude of the loss factors at 1000 Hz.

In addition, there are also some similarities that can be pointed out. First, the general
shapes of the curves are similar. Secondly, the maximum value of the loss factor - in both
cases this cccurs for the 45° orientation - is on the same order of magnitude. Third, in all
cases, in the frequency range of 50 to 1000 Hz, the flexural damping loss factor increases

as the frequency increases.

Some interesting results can be obtained using the analytical model and the
information given above. For example, in the experimental determination of the loss factor

for an angle-ply and off-axis S-2 Glass/3501-6 specimen, beams with the same dimensions

are typically used. For a given orientation, the beam stiffness and therefore the resonant
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frequency will vary. Since most investigators have not acknowledged the frequency
dependence of the loss factor of composite materials, the frequency at which the test is
conducted is of little concern. The information that they present, then, gives the loss factor

as a functon of orientation at different frequencies.

As an exercise, the effect of fiber orientation on loss factor will be analytically
determined in the same manner that previous investigators have experimentally determined
the loss factor. Specifically, an arbitrary beam length of 6.0 in (15.2 cm.) will be
assumed. In addition, all beams will be assumed to have a thickness of 0.2 in (5.0 mm).
To use the analytical model, the effective beam stiffness is first determined. This was done
using a lamination plate theory routine to determine the ABD inverse matrix. The beam
effective bending stiffness is then determined by substituting the D1, term into equation
144 for each of the orientations used. It should be noted that the effective beam stiffness of R
an off-axis beam is different than its angle-ply counterpart by virtue of the stress couplings -
that occur. Using this beam stiffness, the first resonant frequency of each beam is then
determined using equation 149. The loss factor for each orientation at each of the
frequencies is then determined using the analytical imodel given in Chapter 3. Tables 17
and 18 present the results for the angle-ply and off-axis beams, respectively. These tables
show the variation in resonant frequency that occurs when the beam dimensions are kept

constant.

‘The results of both the off-axis and angle-ply loss factor given in Tables 17 and 18
are presented graphically in Figure 40. This graph shows trends that are similar to those

obtained by other investigators, as in Figures S and 6. First, there is a difference in the rate
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Table 17: Analytical Determination of Loss Factor vs. Fiber Orientation for Angle-Ply
S-2 Glass/3501-6

Ornentauon Frequency Loss Factor

| (Hz) (x 104
0 186.36 61.42

+15 174.17 62.90

+30 139.71 66.91

+45 107.39 68.04

+60 101.55 73.79

+75 106.64 79.02

90 109.19 80.43

Table 18: Analytical Determination of Loss Factor vs. Fiber Orientation for Off-Axis
S-2 Glass/3501-6

Orientation Frequency Loss Factor
(Hz) (x 104
0 186.36 61.42
i5 155.14 68.05

119.73 69.55
103.93 69.66
101.39 72.83
105.86 77.85
109.19 80.43

of increase in loss factor for the two configurations. The off-axis material shows a more

rapid increase in loss factor than the angle-ply configuration. The explanation for this is

that additional losses are present by virtue of the stress couplings in the off-axis material,
whereas the angle-ply configuration has no stress couplings, since it is both balanced and
symmetric. At fiber orientations greater than 45°, the loss factor of the two configurations

are within 2%.
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Figure 40 Loss factor vs fiber orientation for off-axis and angle-ply configurations for a
6.0 in long, 0.2 in thick beam.

Figures 38 and 39 can be used to visually determine the effect of orientation at a
constant frequency. What is evident in these figures is that it is important to specify the
frequency of interest. The shape of the curves of loss factor vs. fiber orientation at
constant frequency will vary, showing maxima for different orientations at different
frequencies. This helps to explain the inconsistency in the results of several investigators

who report varying orientation at which the maximum in loss factor occurs.
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It should also be pointed out that the model has the capability of detenmining the effect
of hybridizaticn on resultant loss factor. The affect of the incorporation of two or more
different fibers within one test specimen on the resulting damping loss factor has not been
considered in the literature. The hybrid configuration may provide an alternative means of
attaining specific damping loss factor values which would currently be achievable only by .

varying the fiber orientations.

The loss factor for the 90 degree S-2 glass/3501-6 and AS4/3501-6 unidirectional

composites is a nenlinear function of frequency, showing an increase in loss factor with
increasing frequency. The loss factor for the 0 degree S-2 glass/3501-6 and AS4/3501-6
unidirecticnal composite appears to be linear, showing an increase with increasing
frequency. From experimentally determined 0° and 90° loss facior information, a
methodology is given to determine the shear loss factor based on the loss factor results
obtained in a + 45° beam specimen. The shear loss factor is greater in magnitude than the
other orientations. The assumption that the Poisson's ratios are real and independent of
frequency has been shown to be a plausible assumnption, which will result in only minor
variations from results obtained which include these dependencies. The results of
experimental investigations in the literature which attemnpt to determine the effect of fiber
orientation on loss factor can be analytically determined using the model described in

Chapter 3. The differences that occur when considering angle-ply versus off-axis results

has been shown to be the result of the stress coupling effects on loss factor. »




Chapter 7

MODEL VERIFICATION

The analytical model that has been proposed in Chapter 3 has the capability to
determine the damping loss factor of general laminated composites with any stacking
sequence and with any combination of r aterials, provided the material loss factors are
known. In this investigation, the material loss factors of two material systems were
determined. The parametric studies that were performed can account for the trends that
were obtained by other investigators. To gain added confidence in the model, however, it
1S necessary to show the correspondence between the analytical predictions of the damping
loss factor with experimental determination of the loss factor of a general laminated

composite configuration.

For this validation, it was decided to utilize two different laminated configurations
using the S-2 Glass/3501-6 composite material. This material was chosen over the

AS4/3501-6 material, due to its availability.

/

Test Specimens

There is an infinite variety of possible laminated configurations that could be used to

209
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validate the analytical model. One material configuration that is often used in structural
applications is the quasi-isotropic configuration, {0/90/45/-45],s. Although this
configuration results in material properties which are isotropic in the plane of the material,
the bending stiffness is a function of the orientation tested. In addition, there is a variation
in the magnitude of the stresses or strains through the thickness of the matenal when it is
subjected to a bending moment. As such, there should be a vanation in the loss factor of

this material as a function of the outer ply orientation.

A 16 ply laminate was fabricated having the configuration [0/90/45/-45),,. After
fabrication, the panel was nondestructively inspected using the previously described
ultrasonic C-scan inspection system. In addition, the fiber volume fraction was determined
using the procedures previously indicated. This testing indicated that the panel was free of
manufaciuning defects and had the samc fiber volume fraction as the glass material which

had been previously tested, 63%.

Two sets of specimens were machined from this panel using a diamond-impregnated
blade attached to a milling machine. One set had an outer fiber orientation of 90°, while the
second set had an outer fiber orientation of 45°. The two beam configurations tested then

were [90/0/-45/45],5 and [45/-45/°0/0],s. In all cases the specimens had a width of 1.0 in.

(25.4 mm).




The material was tested using the apparatus described in Chapter 4 and the robust
testing methodology described in Chapter 5. The material was to be characterized in the
frequency range of 50 to 1000 Hz since this is the range in which the material loss factor
was previously determined. This is accomplished by testing beams of various length. Five
specimens of a specific lengtn were used for each of the frequencies tested. Initial beam
lengths for each configuration were chosen so that its first resonant frequency was
approximately 50 Hz. The beam lengths were then reduced to obtain loss factors at
frequencies which were multiples of 100 Hz. The minimum beam length tested was 2.0 in.
(50.0 mm) 1o minimize shear and rotary inertia effects on the loss factor. The results of

this testing are given in Table 19.
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Table 19: Flexural loss factor determination of S-2 Glass/3501-6

Configuration Frequency Loss Factor [Sid. Dev]
(Hz) (x 104

[45/-45/90/0} 534 61.52 [6.25]
78.0 76.96 [1.8]
115.1 65.90 15.0]
208.8 65.39 [2.3]
326.8 77.68 [6.9]
441.4 78.78 [8.0]

{90/0/45/-45] 54.7 55.47 [6 5]
98.6 64.31 {8.6]
213.8 60.19 [3.6]
4874 67.33 [1.8]
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Several features concerning the loss factor of these two configurations arc evident i
Table 19. First, for both configurations, there is an increase in loss factor with increasing
frequency. This follows thc general trend that was eviden: in the testing of the
un.directional composite samples. Second, the quasi isotropic configuration resulis fall
within the rangs of values previously obtained for ibe angle-ply configuration. Inwiively
this should occur, since \he loss factor of the quasi-isotrepic configuration should be some
comoination of the loss factors from the orientations used. Finally, the [45/-45/90/0]
configuration had a higher loss factor thun the [90/0/45/-45), configuration. Intuitively
again, this should occur since the former configuration has the higher damping material

subjected to a higher stress level.

A nalytical [ ination of Fiexu 2l Loss F

The analytical model developed in Chapter 3 is used to analyticaily determine the loss
factor of the two quasi-isotropi~: configurations tested. The input required for the analytical
model, i.¢., the complex moduli, was previously giver in Ch: ster 6. The complex moduli
are necessary to determine the complex ABD invers: matrix. Once this matrix is

determined, the flexural loss factor is determined using the D1, tern in equation 146.

The specific inputs used in this development are given below as

E,;=8.39x 10%(1 +i(5.1476 x 107 f + 59.8698 x 10™*)

E;=2.88 x 10°(1 +i (8.37194 x 10~ In f + 40.6544 x 107*)

Gy, =0.885 x 10°( 1 +i (254998 x 10™*1n £ — 50.371 x 10™*)

vp=0.264 vy = 0.0913
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The analytical model was written into a computer program to determine the complex
ABD matrix. The program that was utilized was Mathmaticaqy,, a symbolic manipulator
program. The program calculated the components of the complex ABD matrix as a
function of frequency. The program then determines the inverse complex ABD matrix.

The flexural loss factor is then determined using the D1y, term in equation 146. The loss
factor as a function of frequency was determined for three different outer ply orientations of
the quasi-isotropic configuration. These orientations were [45/-45/90/0] s, [90/0/45/-45]2¢
and [0/90/45/-45],5. These analytically determined loss factors are presented graphically in

Figure 41.

The loss factors shown in Figure 41 show trends similar to those seen with other
configurations. First, the loss factor increases with increasing frequency. Second, the
specific stacking sequence affects the loss factor of the laminate. For the quasi-izotropic
laminate configuration, the orientations caii be given in order of increasing loss factor as
[0/90/45/-45] 2, [90/0/-45/45)75, and [45/-45/90/0)2s. This shows that to achieve the
maximum damping loss factor, the stacking sequence used should have the orientation with
the highest loss factor located near the surface of the laminate. The analytically determined
loss factors for the quasi-isotropic configuration fall in the range of loss factors previously

determined for the angle-ply configuration.

For comparison purposes, the experimental and analytically determined loss factors
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Figure 41 l.oss factor vs. frequency for quasiisotropic S-2 Glass/3501-6 beams with
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will be presented graphically. Figure 42 shows the comparison for the [90/ -45/45]2s
configuration. The two curves shown in Figure 42 are curve fits to the analytical and
cxperimental loss factor values. The analytcally determined loss factors are shown to
follow the same trends as the experimental values. In gereral, the analytical values are on
the upper side of the scatter, or as a maximum are on the order of 10% greater than the
experimental values. This may be due to the manner in which the values of the
experimental loss factor are determined. The linear extrapolation to zero displacement may
not be appropriate. Instead, a nonlinear fit, such as a logarithmic fit, may be more

appropriate.

Figure 43 shows the comparison of the experimental and analyvically determined loss
factors for the [45/-45/90/0]2¢ configuration. For this configuration, the analytical model
provides an accurate description of the experirnentally determined values of loss factor.
The analytically determined loss factor falls within the scatter of the experimental values in

the frequency range in which the experimental values were determined.

In general, the analytical model based on the elastic viscoelastic correspondence
principle appears to provide an adequate prediction of the damping loss factor of a general
laminated composite configuration. Trends occurring experimentally in the material are
shown to occur using the analytical model. The analytical model has been shown to

provide a loss factor which is within 15% of the experimentally determined values in the

frequency range of 50 to 500 Hz.
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Chapter 8
CONCLUSIONS

This research addresses the issve of the mechanical vibration damping of glass and
graphite composite materials. In gencral, the loss factors of these composite materials have
been shown to be a function of {frequency. As the rescrant frequency of the material is
increased, the loss factor increases. The rate at which these increases occur is a function of

the laminate configuration.

An analytical model was developed based on the elastic-viscoelastic correspondence
principle. In this research, the frequency dependence of the damping loss factor is
included, thereby extending the model as it is currently used in the literature. The
incorporation of this frequency dependence has been shown to analytically explain the
discrepancies in the literature on the loss factor as a function of fiber orientation. Different
investigators have obtained conflicting experimental results for the composite laminate fiber
orientation which results in the maximum loss factor. Using the analytical model
developed in this research, all of their results can be shown to be valid. This occurs
because for a given investigation, the test specimen dimensions are typically kept constant.
When the fiber orientation of the test specimen is changed, the beam stiffness alse changes.
This results in a change in the first resonant frequency of the bcam. The results of the
mode! show that for a given frequency, the fiber orientation which has the highest loss

factor is different.

218




219

The model has shown that the stress couplings that occur in unbalanced laminated
constructions have a pronounced effect on the loss factor. The loss factor was shown to
increase proportionally to the magnitude of the bending twisting coupling terms. The loss

factor therefore showed the most pronounced increase for orientations of 15° and 30°.

The loss factors determined using the analytical model have shown excellent
agreement to the experimental results. This model can therefore be used as an analytical
tool to determine the material loss factor of composite materials at any frequency of interest.
In addition, the loss factor in any direction can also be determined. This will enable the
bounding of the structural loss factor to be obtained. This would be accomplished by using
the following procedure. First, the maximum and minimum values of the material loss
factor in the frequency range of interest is determined for the specific material configuration.
This minimum and maximum valve would then be used as input to one of the various finite
clement routines, since most finite element routines a'low only a single value of damping
loss factor as input. The finite element modei would then dztermine the strain energy
dissipated and stored in the structure. The loss factor is then determined using the ratio of
the energy dissipated to the stored energy, as was previously discussed in Chapter 3. In
addition, the structural loss factor at specific frequencies can also be determined by
determineing the specific material loss factor at a given frequencyi and using this as input to
the finite element routine. This capability, to the author's knowledge, has not been

previously available io the structural designer.

The analytical model, as well as the experimental investigation, indicates that to

achieve the highest fiexural loss factor for a given set of laminae orientations, the




220

orientations that have the highest loss factor should be positioned near the surfaces of the
specimen. This is demonstrated in the analytical determination of the loss factor for the

quasi-isotropic configurations shown in figure 41.

An experimental apparatus has been designed, fabricated and calibrated for
determining the in-plane vibration damping loss factors of composiics. The use of a
Teflon-impregnated glass fabric, commonly used as peel-ply material in the composites
industry, and a bolt torque of 10 ft-1b. has been shown to result in consistent loss damping
factor values, while at the same time causing no damage to the specimen. The calibration
of the apparatus using a low damping material, 2024 T-4 aluminum, and employing this
interface material and bolt torque resulted in loss factor values that were within 2% of the

loss factors determined analytically using the Zener thermoelastic theory.

When utilizing the half power band width technique with materials that have high
damping, i.. zreater than 60 x 104, the tip amplitudes used in the calculation must be
determined. If the loss factors have a magnitude lower than 0.001 in. for more than 25%
of the sample time, the calculated loss factor will be reduced from the true loss factor for

the material.

A riustiesting wcthodology is proposed for determination of the damping loss
factors of composite materials. This methodology is an attempt to minimize external
sources of energy dissipation which occurs in vibration damping tested, such as
aerodynamic and fricliuiaal losses and energy dissipated by the resultant excitation of testing

apparatus. Specifically, this method calls for the partitioning of the tip displacement vs.




time information into 512 data point sets. The loss factor is determined as a function of the
maximum beam vibration amplitude in each interval. A linear fit is then performed on this
data, with the fit being extrapolated to zero displacement. This extrapolation is a quantitative
way to extract the external sources of energy dissipation from the beam vibration response.

This zero displacement loss factor value is then assumed to be the material loss factor.

In general, the three in-plane loss factors of the glass/epoxy composite are greater
than that of the graphite/epoxy in the frequency range up tc 1000 Hz. This trend should
also carry over to other composite laminated orientations. The material loss factors for both
systems are at least a factor of two greater than the loss factor of a conventional structural
metal, such as steel or aluminum. In both systems, the 0° orientation loss factor, Ny,
showed a linear increase as the frequency increased. The transverse and shear loss factors,

TNy and T}y, showed a nonlinear increase as the frequency increased.
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Chapter 9
FUTURE WORK

Throughout the course of this research, numerous concerns were raised, investigated
to a reasonable extent, and put aside as additional efforts that should be considered
concerning the vibration damping testing of composites. A brief description of some of

these issues follow.

In the determination of the damping loss factor of composites using the half power
band width method, it is necessary to determine the amplitude of vibration of the end of the
beam. Conventional techniques can only approximate this amplitude since the end of the
beam alone can not be physically measured. All sensors require a finite volume of material
on which to perform their measurement, such as for an accelerometer. strain gage or
noncontact eddy current probe. In additicn, these sensors in actuality measure average

displacements in an indirect manner.

An alternative technique was briefly investigated as part of this research. This
technique utilized an embedded optical fiber at the center of the beam. The optical fiber is

cut incident with one end of the beam and is allowed to extend from the other end. A
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helium neon laser is then coupled to the optical fiber. The light is guided through the
optical fiber and exits the composite end. This light, visible to the unaided eye, can be
detected by an array of optical sensors. Depending on the size of the sensors, the motion
of the light exiting the embedded optical fiber can be accurately monitored. With the use of
high-speed A-D data acquisition systems, a very accurate characterization of the beam tip
displacement can be made. In addition, the displacement is measured using first principles,
unlike the other techniques that are normally utilized. Accuracy can also be enhanced by

increasing the distance from the beam end to the sensor.

This technique was investigated using equipment at the Fiber Optic Research Center
at Virginia Polytechnic and State University. Composite specimens were made with
embedded sensors. Two configurations were utilized. One was a 30° off-axis beam and
the cther was a unidirectional configuration. The off axis configuration was utilized since a
bending twisting coupling should occur when it is subjected to a bending moment. It was
hypothesized that this technique would be able to measure the degree of twist by utilizing
two embedded optical fibers, one in the center of the beam width and one spaced 1/4 of the
width away from an edge. If a twist occurred, the light should trace out an arc on a plane

perpendicular to the end of the beam.

The sensor used to monitor the light exiting the optical fiber was a 512 by 512 array
of optical detectors, which had planar dimensions of 0.5 x 0.5 in. This was coupled to a
minicomputer with the sensor output being displayed on a CRT screen. At the time this

investigation was carried out, the position of the incident light could not be digitally stored

to a file. The response, however, could be visually monitored.
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The results of this qualitative investigation were that the tip displacements and the
degree of twist were measurable. In addition to its use as a sensor for damping
measurements, this technique could also be utilized 1o nondestructively monitor the
structural integrity of composite components. This would be done using the following
procedure. Consider the composite wing of an aircraft such as the AV-8B, Initially, the
vibrational response of this component would be measured by ultrasonic excitation. The
resonant frequency could be determined as well as the damping loss factor. After a given
period of service, the wing could be excited at the same location as was previously used
and the resonant frequency and damping loss factor could be determined. If these were
different than the original values, it would be hypothesized that some structural degradation
had occurred. This could be quantitatively determined by backing out the component

stiffness from the resonant frequency.

A more compiete description of this technique has previously been publisked (77). In

addition, a patent is currently pending (78).

In Chapter 2, mention was made of ¢xperimental work showing the effect of defects
on the damping loss factors of composites. Plunkett (36) shows that the loss factor of
composites increases as the transverse crack density increases. Other defects can also

dissipate energy through the friction that occurs at the resulting interface. An investigation

could be undertaken to determine the energy dissipated per area of defect
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In this investigation, simulated delaminations could be fabricated in a section of a
composite panel. Specimens with and without the defect would be cut from the panel and
tested. The energy dissipated pei area of defect could then be determined from the

difference in the losses obtained from the two configurations.

This investigation could then be generalized to other defects, such as cracks.
Transverse cracks can be easily created in composite panels by using a cross-ply
configuration. Various densities of transverse cracks can be achieved by loading the
material in tension to a predefined strain. The loss factor could then be determined as a
function of transverse cracks. The dissipation per unit area from the transverse cracks
could then be compared with that obtained from the delamination sample. This may lead to

a universal dissipation of energy per unit volume of defect.

The initial experimental investigation to determine the damping loss factor of
composites used the beam configuration that is commonly used in the literature, i.e. a
horizontally oriented beam. The three in-plane composite material loss factors were
determined in the frequency range of interest. The results of these efforts have been - '

published elsewhere (67,79).

The results that were obtained at low frequencies, i.e., long beam lengths, for beams e

which had a low bending stiffness gave results that were not consistent with resulis

reported elsewhere in the literature. What was occurring was a significant increase in loss
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factor as the frequency decreased. In some cases, this increase was as high as a factor of

two. One possible explanation would be that aerodynamic damping was influencing the

results. However, for the aluminum beam, this did not occur. ‘The aluminum beamn had a

much higher section stiffness than the composites that were affected. The 0° unidirectional
graphite/epoxy also did not show this increase. This would discount the statement that the -

effect was caused by aecrodynamic damping.

What may be occurring instead is an increased damping caused by gravitational
effects. This can be shown to be a plausible explanation by considering one cycle of
vibration. Without loss of generality, assume that the beam is initially excited downward.
The beam's acceleration, and therefore displacement, is the result of the combined excitation
force and the force due to gravity. After the beam reaches its maximum displacement, the
energy stored in the beam causes a restoring force to act upward. This results in the
acceleration of the beam which now has the gravitational acceleration acting against it. The
resultant displacemeat is therefore less than it would have been in the absence of gravity.
Since the displacement is less, the stored energy in the material is less. The restoring force
to which the beam will respond will cause an acceleration which is less than it would have

been in the absence of gravity. As such, the resultant displacement downward is less.

Since the amplitude of vibration is reduced with each subsequent motion, the apparent
loss factor becomes greater. It is hypothesized that this effect is more pronounced on
beams which have low stiffness. When the beam is oriented vertically, the gravitational

force acts equally for each direction of motion. This is why the vertical beam orientation

was used in this research. A comparison of the loss factor measutement in these two -
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orientations are given in references 80 and 81.

This effect could be experimentally modelled in the followirg manner. First, a
composite specimen that has demonstrated a variation in loss factor when using a horizontal
orientation compared to that obtained using a vertical would be fabricated. The loss factor
would be determined using the horizontal orientation. These same specimens would be
placed in the vertically oriented apparatus. The loss factor would then be determined.
Before removing the specimen fromn the apparatus, a very compliant spring would be
artached to the specimen. The loss factor would then be determined with this additional
directional force applied. If the loss factor resulis were shifted toward the results obtained

using the horizonta! orientation, this would qualitatively demonstrate this phenomenon.

This would have a dramatic impact on damping testing, since currently the majority of

the testing that is performed utilizes the horizontal beam orientation.

The experimental investigation conducted in this program utilized specimens
fabricated using one material system. What was not considered was the effect of

hybridization on the damping loss factor.

The utilization of two distinct fibers in a composite has led to some interesting

material properties. An example is the hybrid effect, the apparent improvement in tensile
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strength from what would be anticipated using maximum stress theories. Although this can
be explained by considering the effect of the difference in coefficients of thermal expansion

of the two fiber systems, there is a synergistic enhancement of the composite strength.

The damping loss factor that may occur as a result of these residual stresses is
unknown. The variation in coefficients of therrnal expansion betwezen adjacent layers of
glass and graphite laminae should result in a shear stress through the matrix. This may result

in added energy dissipation, since a maximum energy dissipation occurs through shear.

the. most effective way to investigate the effect of hybridization on loss factor wouid
be analytically. In this case, the niodification to the analytical model would need to be
twofold. First, the incorporation of residual swesses would need to be addressed, which
may result in a damping equivalent hybrid effect. Secondly, the model modification would
have to include three-dimensional stresses, such as the interlaminar and through-thickness
shear stresses. A discussion on the three-dimensional extension to the model developed in

Chapter 3 is given in the next section.

In addition to the modification to the analytical model, an experimental investigation

would need to be undertaken. This would allow for the model modifications to be verified.

In the development of the analytical model given in Chapter 3, the plane stress
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assumption was utilized. This reduced the complexity of the analytical model froin a three
dimensional problem to a two dimensional problem. If this simplification was not made,
the development wouid have continued using the identical formulations. For the effort
undertaken for this research, since thicknesses were small, the through thickness stresses

can be assumed 10 be negligible.

For various structural applications, as the thickness of the material is increased, the
need for incorporation of the through thickness stresses increases. When these thick
stuctures are excited, their response will be governed by the three-dimensional elastic
properties of the material. Likewise, the damping response will be governed ty the

three-dimensional loss factor characteristics.

An analytical three-dimensional model has been proposed by Trethewey and coworkers

(82). In this development, the Qij terms have been determined as a function of the elastic

properties of the composite. A generalized 3-D damping model could be reaaily proposed
using the elastic viscoelastic correspondence principle, and making the substitution of the

complex moduli for the real moduli given by Trethewey and coworkers (82).

With knowledge of the material loss factors in three dimensions, which for this case
would mean the determination of the through thickness loss factor as a function of
frequency, the reduced stiffnesses for a specific laminated stacking sequence can be
determined. The energy dissipation that the structure would experience then could be

determined by incorporating the appropriate loss factor in the structural analysis routine.
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Appendix A
Annotated Copy of Data Collection Program

L L T T AT IR LTI LA Y

' QBEX6.BAS DAS16 Example of MODES 0, 1,6, 7,8,9,17 '

' MetraByle Corporation for QuickBasic 4.0 9-7-88 )

................

DIM DIO%(4)
DIM DT%(12000), CH%(12000) 'sct up integer arrays for data/channel #

COMMON SHARED DIO%(), CH%(, DT%()
DECLARE SUB DAS16 (MODE%, BY VAL dummy%, FLAG%)

'$DYNAMIC
DIM dat%(12000)
'$STATIC

5 print "THE DATE OF THIS PROGRAM UPDATE IS 11/19/90, NEW CALIBRATION"

10" THIS PROGRAM IS THE DATA AQUISITION PROGRAM FOR THE VIBRATION DAMPING
20 ' PROJECT. THIS IS SET UP TO READ CHANNEL 0 AS TiE DISPLACEMENT SENSOR

30 ' AND CHANNEL 1 AS THE FORCE HAMMER. THE PROGRAM TAKES DATA AT YOUR
40 ' PRESCRIBED RATE AND WRITES IT TO A DATA ARRAY, CH% AND DT. THE PROGRAM
50 ' PLOTS THE ABSOLUTE VALUE OF THE L.OG OF THE DISPLACEMENT VS. TIME. THE
60’ DATA CAN BE SAVED IN EITHER THE DIGITAL VALUE FORM (-2048 TO 2047) OR

70" CAN BE SCALED BEFORE BEING SAVED TO A FILE. THE DIGITAL DATA FILE NAME
80° WILL BE VIBDATA.DAT WHILE THE SCALED DATA WILL BE VIBDATA.PRN. THE
PROGRAM

90" WILL ALLOW YOU TO MAKE THE AFPROPRIATE SCALING FACTOR CHANGES.

91 ' THIS PROGRAM SETS THE ZERO POINT OF THE SYSTEM TO 30 MILS FROM THE

92 ' SPECIMEN, WITH A 29 MIL OFFSET.

100'**t!tt#*‘tl**t***#***F*###t**#*‘*t##*t***ttttttlt*t*t*#***t*t**‘*#****

110" THIS PROGRAM IS CALLED VIBDAMP.BAS

120'**I********#t###**“t**ttt*ttt**#**#**t**#‘t****t#t**#t*tt#**&*tt*t***
125 ‘DIM DT9%(12000)
126 'DIM CH%(12000)
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127 KEYPRESSED = 0
128 CL5

130"

140' LOAD DASH16.BIN DRIVER

150"

160 DEF SEG = &H5000

170 'BLOAD "CNILS\DAS\DASH16.BIN", 0

180"

190 ' *** INITIALIZE WITH MODE 0

200"

210 MD% = 0

220 DIO%(0) = &H330 ' SET VO ADDRESS

230 DIO%(1) = 2 * SET INTERRUPT LEVEL

240 DIO%(2) = 3 *SET DMA LEVEL

250 FLAG% = 0

260 'DASH16 = 0

270 ‘CALL DASH16 (MD%, DIO%(0), FLAG%)

275 CALL DAS16(MD%, VARPTR(DIOY%(0)), FLAG%)

280 IF FLAG%<>0 THEN PRINT "INSTALLATION ERROR":STOP

290"

300 ' *** SET MULTIPLEXER SCAN LIMITS

316 MD% = 1

360 PRINT

370 PRINT " ATTACH THE OUTPUT FROM THE EDDY CURRENT PROBE TO CHANNEL 0"
380 PRINT " AND THE OUTPUT FROM THE FORCE HAMMER TO CHANNEL. 1"

390 INPUT " AFTER DOING THIS, HIT ANY KEY "Z$

395 CLS

400 DIO%(0) = 2

410 DIO%(1) = 2

420 ‘CALL DASH16 (MD%, D10%(0), FLAG%)

425 CALL DAS16(MD%, VARPTR(DIO%(0)), FLAG%)

430 IF FLAG%<>0 THEN PRINT "ERROR # ";FLAG%;"IN SETTING SCAN LIMITS":STOP
440"

450" *** DO ONE A/D CONVERSION AND INCREMENT MUX

460"

470 PRINT

530" *** DO 1256 A/D CONVERSIONS AND PRINT AVERAGE

540 PRINT

550 PRINT " THE FOLLOWING SECTIONS WILL ALLOW QU TO ADJUST ZERO FOR THE"
560 PRINT " EDDY CURRENT PROBE. ADJUST THE VERNIER FOR THE PROBE HOLDER"
570 PRINT " UNTIL THE OU™PUT IS CLOSE TO 0. THEN HIT ANY KEY TO CONTINUE"
580 WHILE NOT KEYPRESSED

590 MD% = 17

600 DIO%(0) = 10 DIVIDE 10 MHz BY 10 TO GIVE 1MHz FREQUENCY

610 DIO%(1) = 13 * DIVIDE 1 MHz BY 12 TO GIVE 83.3 KHz FREQUENCY

620 FLAG% =0

630 ‘CALL DASH16 (MD%, DIO%(0), FLAG%)

635 CALL DAS16(MD%, VARPTR(DIO%(0)), FLAG%)

640 DIO%(0) = 1266

650 ‘DIO%(1) = &H6800 ' SEGMENT OF MEMORY TO RECIEVE DATA

655 DIO%(1) = VARSEG(DAT%(0)) 'SEGMENT JF MEMORY TO RECIEVE DATA
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660 DIO%(2) =} 'INDICATES TYPE OF TRIGGER; 1 = TIMER, 0 = EXTERNAL TRIGGER
670 DIO%(3)=9 '0=ONE CYCLE, 1= RECYCLE

675 'CALL DASH16 (MD%, DIO%(0), FLAG%)

680 MD% = 6

695 CALL DAS16(MD%, VARPTR(DIO%(())), FL.AGY%)

700 MD% = 8

705 CALL DAS16(MD%, VARFTR(DIO%(0)), FLAG%)

710 'CALL DASH6 (MD%, DIO%(0), FLAG%)

720 IF DIO%(1) = 1 THEN GOTO 700

730 'MD% =9

740 DIO%(0) = 1266 * NUMBER OF WORDS TO TRANSFER

750 'DIO%(1) = &HE800 ' SEGMENT OF MEMORY TG TRANSFER FROM

755 DI0%(1) = VARSEG(dat%(0))

760 DIO%(2) = 0 * SET TRANSFER TO BEGIN AT BEGINNING OF SECMENT
770 DIO%(3) = VARPTR(DT%(0)) ' TO START TRANSFER AT BEGINNING OF ARRAY
780 DIO%(4) = VARPTR(CH%(0)) * CHANNEL THAT DATA 1S FROM

785 'CALL DASH16 (MD%, DIO%(0), FLAG%)

787 MD% = 9

789 CALL DAS16(MD%, VARPTR(DIS%(0)}, FLAG%)

790 IF KEYPRESSEDS<>"" THEN KEYPRESSED=-1

800 SUM = 0

810 FOR [ = 1 TO 1266

820 SUM = SUM +DT%(l)

830 NEXT1

840 ZERO= SUM/1266

845 ZERO = ZERO - 122.82

850 LOCATE 15.20

860 PRINT USING "###.###":ZERO

870 KEYPRESSEDS$=""

880 KEYPRESSEDS<INKEYS

890 WEND

895 *

896 ' *** SET MULTIPLEXER SCAN LIMITS

897 MD% = 1

898 DIO%(0) == 2

399 DIO%(1} = 3

900 ‘CALL DASH16 (MD%, DIO%(0), FLAG%)

903 CALL DAS16(MD%, VARPTR(DIO%(0)), FLAG%)

905 IF FLAG%<>0 THEN PRINT "SRROR # ";F1.LAG%:;"IN SETTING SCAN LIMITS":STOP
909 '

910" *** SET PROGRAMMABLE TIMER RATE USING MODE 17

920' SO THAT TIMER CAN BE SET TO MAX. VALUE

930 ' NOTE THAT CURRENT TIME FOR 2 CHANNEL SCAN IS 1.30 E-5 SEC."

940"

950 PRINT "DO YOU WANT TO CHANGE THE VALUES FOR THE PROGRAMMABLE TIMER"
960 PRINT " THE CURRENT SETTING iS FOR A FREQUENCY OF 76.9 KHz. THIS IS"
970 PRINT " THE MAXIMUM FREQUENCY. ANY NEW FREQUENCY WILL BE LOWER THAN"
980 INPUT * THIS. DO YOU WANT TO CHANGE FREQUENCIES ";A$

990 PRINT

1000 IF A$ = "N" OR AS = "n" THEN GOTO 1140

1610 PRINT " TO SET A NEW FREQUENCY, INPUT TWO NUMBERS WHICH WILL"
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1020 PRINT " BE DIVIDED INTO 10 MHz THAT WILL RESULT IN THE FREQUENCY"
1030 INPUT " THAT YOU DESIRE; A,B (CURRENT DIVISOR IS 130) ":D.V

1040 K = D*V

1050 PRINT

1060 Ti#= 1E+07/K

1070 IF K>=130 GOTO 1170

1080 PRINT

1090 PRINT " YOU MUST CHOOSE A DIVIDE BY GREATER THAN 130 IN ORDER TO"
1100 PRINT " COLLECT DATA CORRECTLY. PLEASE INPUT VALUES WHICH HAVE A"
1110 PRINT " PRODUCT GREATER THAN 130 11! "

1120 PRINT

1130 GOTO 1010

1140 D=5

1150 V = 26

1160 TI#= 1E+07/130

1170 MD% = 17

1180 DIO%(0) = D * DIVIDE 10 MHz BY 10 TO GIVE 1MHz FREQUENCY

1190 DIO%(1) = V * DIVIDE 1 MHz BY 12 TO GIVE 83.3 KHz . REQUENCY

1200 FLAG% =0

1210 ‘CALL DASHi6 (MD%, DIO%(0), FLAG%)

1215 CALL DA S16(MD%, VARPTR(DIO%(0)), FLAG%)

1220

1230 * *** DO N A/D CONVERSIONS AND TRANSFER TO MEMORY VIA DMA - MODE 6
1240 °

1250 {NPUT "ENTER NUMBER OF CONVERSIONS DESIRED (UP TO 12000): ",.M

1270 PRINT

1280 PRINT "THE SYSTEM WILL BEGIN TAKING DATA FROM ASSIGNED CHANNELS"
1290 INPUT "WHEN READY, STRIKE ANY KEY AND DATA COLLECTION WILL BEGIN " A$
1300 DIO%(0) = M

1310 DIO%(1) = &H6800 ' SEGMENT OF MEMORY TO RECIEVE DATA

1315 DIO%(1) = VARSEG(dat%(0))

1320 DIO%(2) = 1 'INDICATES TYPE OF TRIGGER; 1 = TIMER, 0 = EXTERNAL TRIGGER
1330 DIO%(3) =0 ' 0= ONE CYCLE, 1= RECYCLE

1340 MD% = 6

1350 'CALL DASH16 (MD%, DIO%(0), FL.AG%)

1355 CALL DAS16{MD%, VARPTR(DIO%(0)), FLAG%)

1360 MD% = 8

1370 'CALL DASH16 (MD%, DIO%(0), FLAG%)

1375 CALL DAS16{MD%, VARPTR(DIO%(0)), FLAG%)

1380 IF DIO%({1) = 1 THEN GOTO 1360

1350

1400 PRINT CHRS$(7)

1410 "

1420 *** TRANSFER DATA FROM MEMCRY TO ARRAY USING MODE 9

1430 MD% = 9

1440 DIO%(0) = M * NUMBER OF WORDS TO TRANSFER

1450 "DIO%(1) = & H6800 * SEGMENT OF MEMORY TO TRANSFER FROM

1455 DIO%(1) = VARSEG(dat%(0))

1460 DIO%(2) = 6 " SET TRANSFER TO BEGIN AT BEGINNING OF SEGMENT
1470 DIO%(3) = VARPTR(DT%(0)) ' TO START TRANSFER AT BEGINNING OF ARRAY
1480 DIG%(4) = VARPTR(CH%(0)) ' CHANNEL THAT DATA IS FROM
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1490 ‘'CALL DASH16 (MD%, DIO%(0), FLAG%)

1495 CALL DAS16(MD%, VARFTR(DIO%(0)), FLAG%)

1500 PRINT CHR$(2)

1510°

1520 ' READ DATA FROM MEMORY SEGMENT AND PRINT GRAPHICS, LOG(DISPLACEMENT)
1530 VS. TIME AND FORCE VS. TIME

1540°

1545 Q=0

1550 FOR 1 =1 TO M-1 STEP 2 ' SEARCH HAMMER ARRAY FOR WHEN VALUE

1560 IF DT%(1) < 250 THEN GOTO 1600 ' REACHES A PRESET VOLTAGE INDICATING -
1565 IF '<22 GO 7O 1610

1570B =1-21 * HAMMER IMPACT. STORE ARFAY NUMBER AS B

1580 K = (M-B)/640 *K SCALES TIME TO FIT ON X-AXIS

1590 GOTO 1620

1600 NEXT I

1610B =20

1615 K = (M-B)/640 * K SCALES TIME TO FIT ON X-AXIS

1620 Q=0

1625)=0

1630 FOR I =B TO M-1 STEP 2 ' SEARCH FOR MAXIMUM VALUE OF DISPLACEMENT
16490 IF ABS(122.82-DT%(i)) < Q THEN GOTO 1660 ' SO THAT GRAPHICS CAN BE SCALED
1650 Q = ABS(122.82-DT%(1))

1655 j=i

1660 NEXT |

1670 R#=Q/50

1680 INPUT "DO YOU WANT TO PLOT LOG(DISPLACEMENT) VS. TIME ";AS

1690 IF A% ="N" OR AS$ = "n" THEN GOTO 1820

1700 CLS:SCREEN 2:KEY OFF

1710 W = (LOG(Q))/100 "W SCALES DISPLACEMENT TO FIT ON Y-AXIS
1720 FOR1=B TOM-1 STEP2  'LINES 1230 - 1410 PL.OTS DISPLACEMENT
1730 Z = ABS(DT%(I)- 122.82) " AND FORCE VS. TIME USING LOG PLOT

1740 IF Z = 0 THEN GOTO 1780

1750 L = LOG(Z)

1760 PSET ((I-B)/K. (100 - (L/W)))

1770 GOTO 1790

1780 PSET ((I-B)/K, 100)

1790 PSET ((I-B)/K, (190-(DT%(1+1)/23)))

1800 NEXT I

1810 INPUT " AS

1820 INPUT "DO YOU WANT TO PLOT THE SAME DATA USING DISPLACEMENT VS.
TIME":A$

1830 IF A$ = "N" OR A$ = "n" THEN GOTO 1900

1840 CLS:SCREEN 2:KEY OFF

1850 FOR 1= B TO M-1 STEP 2

1860 PSET ((-B)/K, (DT%()-122.82)/R#)}+51)

1870 PSET ((I-B)/K, 51)

1850 PSE T ((I-B)/K, (195-(DT%(1+1)/23)))

1885 PSET ({I-B)/K, 195)

1890 NEXT

1900 N = M-3

1902 M1 = 0.0984241*(Q/409.6)+ 3.000045E-4 'CALIBRATION AS OF 11/16 90
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1903 ‘M1 = 4.69312E-02*(Q/409.6)+7.59419E-04 ‘calibration as of 10/23/90
1904 ‘M1 = 4.02424E-02*(Q/4(9.6)-1.883607E-04 ‘calibration as of 6/26/89

1905 PRINT " MAX DISPLACEMENT 1S “;M1
1910 INPUT "",A$

1920 PRINT "NUMBER OF DATA POINTS IS "N

1925 PRINT

1930 INPUT "WOULD YOQU LIKE TO CHANGE THE START OF THE DATA ";A$

1940 IF A% = "N" OR A$ = "n" THEN GOTO 1970

1950 PRINT "THE CURRENT VALUE OF THE START FOR DATA IS ";B

1960 INPUT " ENTER NEW VALUE FOR START OF DATA TRANSFER ";B

1970 CLS:SCREEN 0

1980 °

1990 "*** TRANSFER DATA

2000

2010 PRINT " THE DATA WILL NOW BE PRINTED TO A FILE. INSERT A DATA DISK IN"
2020 PRINT " DRIVE A. INPUT THE NAME YOU WISH TO CALL THIS FILE"

2030 PRINT " PLEASE USE THE EXTENSION OF 'PRN' FOR YOUR FILE *;

2040 INPUT "" FILES

242 B3 ="" :
2044 1F INSTR(FILES,B$) = 0 THEN GOTO 2047 P
2045 C3=FILES :
2046 GOTO 2050

2047 AS="A:"

2048 C$=AS+FILES

2050 PRINT

2060 PRINT " CURRENT ARRAY WILL BE TRANSFERRED TO A FILE, ";C$

2065 PRINT

2070 PRINT " YOU CAN SCALE THE DATA OR PRINT THE DIGITAL DATA TO THIS FILE"
2075 PRIFTT

2080 PRINT " THE SCALING FACTORS ARE CURRENTLY SET WITH A *

2085 PRINT " SLOPE AND INTERCEPT FOR DISPLACEMENT OF 4.69312E-2 AND "

2087 PRINT " 7.59419E-4, RESPECTIVELY. DO YOU WANT TO PRINT THE DIGITAL"

2080 PRINT " SLOPE AND INTERCEPT FOR DISPLACEMENT OF 4.02424E-2 AND "

2100 'PRINT "-1.883607E4, RESPECTIVELY. DO YOU WANT TO PRINT THE DIGITAL"
2130 INPUT "DATA TO FILE";A$

2140 IF A$="Y" OR A$="y" THEN GOTO 2340

2145 PRINT

2150 PRINT "DO YOU WANT TO CHANGE THE SLOPE AND INTERCEPT OF THE EDDY"
2155 INPUT "CURRENT PROBE FROM 4.69312E-2 AND 7.59419E-4, RESPECTIVELY";A$
2160 'INPUT "CURRENT PROBE FROM 4.02424E-2 AND -1.883607E-4, RESPECTIVELY";A%
2170 IF A% = "N" OR A$ = "n" THEN GOTO 2210

2180 PRINT

2190 INPUT " INPUT NEW SLOPE AND INTERCEPT IN FORMAT, S.I ":S# E#

2200 GOTO 2230

2210 "S#= 4.02424E-02

2212 'E#=-1.883607E-04

2214 S# = 0.0984241

2216 E# = 3.000045E4

2218 'S#t=4.69312E-02

2220 E#=7.59419E-04

2222 PRINT "THE CURRENT NUMBER OF DATA POINTS THAT WILL BE PRINTED IS ";M-B
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2223 PRINT "DO YOU WANT TO CHANGE THE NUMBER OF DATA POINTS STORED *;
2224 INPUT "",A3

2225 IF A%="N" OR AS = "n" THEN GOTO 2230

2226 PRINT

2227 PRINT "INPUT THE TOTAL NUMBER OF POINTS THAT YOU WANT TQ STORE ";
2228 INPUT "V

2229 M=B+2*V

2230 CPEN CS$ FOR OUTPUT AS #1

2240 PRINT #1,"THE FREQUENCY OF TEST IS ";Ti#/2

2250 PRINT #1,"THE TIME INTERVAL BETWEEN DATA POINTS IS ";2/TI#
2260 FOR1=8B TOM STEP 2

2270 DT# = DT%(1)/409 4

2280 DT# = S# * DT# + E#t - 03

2290 PRINT #1,DT#

2300 NEXT 1

2310 CLOSE #1

2315N=(M-B)2

2316 PRINT

2320 PRINT "THE NUMBER OF CONVERSIONS THAT HAVE BEEN MADE IS ";N
2330 GOTO 2435

2340 PRINT "THE DIGITAL DATA WILL BE STORED IN FILE ";C$

2350 PRINT "THE NUMBER OF DATA POINTS ARE ";M-B

2360 OPEN C3 FOR OUTPUT AS #1

2370 PRINT "THE FREQUENCY OF DATA ACQUSITION IS ";Ti#2

2380 FOR 1 = B TO M-1 STEP 2

2400 PRINT #1, DT%(I)

2410 'PRINT #1,T#,DT%(1);DT%(1+1)

2420 NEXT |

2430 CLOSE #1

2435 PRINT

2440 PRINT "WOULD YOU LIKE TO RUN THIS PROGRAM AGAIN ? "
2450 INPUT " M$

2460 IF M$ ="Y" OR M$ = "y" THEN GOTO 127

2470 END




Appendix B

- Half Power Band Width Development

The analytical technique that is used for the determination of the damping loss factor
is called the half power band width method. In this technique, the loss factor is determined
as the ratio of the difference in frequencies at which are -3dB of the value of the frequency
response at resonance and the resonant frequency. The loss factor is then given as

Af,

f, 1

T]:

The derivation of this relationship as a way in which the loss factor can be
deteremined is not intuitively obvious. As such, a derivation will be given in the

following.

Consider a beam which is subjected to a transverse displacement caused by a force

Fo(x)0(x) appled at the free end of the beam. The equatien of motion which describes this

beam is
Elagi\% +pA@2-§ =F, 3(x)
. dx at Y]

- where 8(x) is the Kronecker delta function. This function has the following values,

245
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3(x) = 1 when x equals 0 and 8(x) = 0 when x is not equal to 0. In this application, after

the removal of the force, the beam response is given as

To solve equation 3 to obtain a description of the beam transverse motion, a solution

1s assumed which is oi the form

wx,t) =W(x) ci”' o

Substituting equation 4 into equation 3, using the relations as follows

%\:-,=in(06in‘ S
ot 6
iw cim[ d4w
ax* dx* 7
we obtain
Ele® %- ¢ o' pAW =0
X 8
or
2
d'w WpA
Y —Cw=0
dx? El 9

For low loss viscoelastic materials, it is assumed that the free vibrations are

approximately harmonic. In equation 9, the real modulus, E, is then replaced with the -
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complex modulus, E*. Using the relationship

Al'af
o =L -

- E]‘

and substituting into equation 9, the differential equation of motion becomes

4
év.- 9—W=O
dx? 1

W=C, sinﬁlf + Czcosgll +C, sinh%ﬁ +C, cosh?

12 are at the clamped end of the beam

W=0 and 9_“;=0 at x=1
ax

while at the free end of the beam
2 3
d—-‘g-=0 and -d—w3-=0 atx=0
dx dx

2

d
Solving ‘: =0 at x=0, results in
dx

2 2 2 2
o | ax o a x o . ox o
O=C1-—z-sm-l——C2—2-cos-i— + C3—2— sinh-— +C4-E-cosh
1 1 1 : 1

A solution to this ordinary differential equation is assumed to be of the form

10

11

12

The boundary conditions required for the determination of the constants in equation

13

14




or
2 2
a v
0= "Cz 7 + C4 -2—
1 1 16 .
or Cp=C4. Substituting this into equation 12 results in
w=C, singl-"- + Czcosgli +GCy sinh% +C, coshgl-x 17
. dPw . .
Solving —= 0 at x=0, in equation 17 results in
dx
3 3 3 3
o .
U=-C; — cos XX 4 G 2 costE 4 G~ sinh=> + ) 2 coshZ2
£ 1 P 1 3 1 13 1
3 18
or
U=s—C) =07+ 3 —
r * 19

or C; = C3. Substituting this into ec,uation 17 results in

W =C, sin-qf’i+ Czcosgié +C, sinh%ﬁ +Ca coshgl—x

Using the boundary condition that W =( at x =1, equation 20 becomes

0=C;sin o+ Cycos x+ Cy sinha+ C, cosh

. . d . .
Using the bouandary condition that ;‘-\g =0 at x=1]in equation 20 resuits :n

0=Cycosa- C, sina+ C; cosh -+ C, sinh a

Using equations 21 to solve for C; and substituting this into equauion 22 yields




249

C, (cos o + cosh o)’ C. (sinh _
T Grotsama) T imha-sine) 23

or

C, (cos & + cosh )’ (sinh o — sin o ) (sinh o + sin @ )
(sin @ + sinh &) 2 (sinh @ +sin o) 24

The only nontrivial solution to the equation occurs for nonzero Ca, when the

numerator of equation 24 is zero or when
2 ] 2 -2 2
0=-cos” o~ 2 cos acosh @ - cosh” & + sinh” & — sin” @ 25
Using the trigonometric identities where
o 2 2 .. s a2 . 2 :
¢sin“a+cos"a)=1 and (cosh"o—sinh"uw)=1 T -
in equation 23, ihe solution becomes

cosacosha=-1 27

Tbere ase therefore an infinitc number of solutions to equation 27. For each oy, there are

associated constants Cp which form the solution to equation 3.

The displacement of the beam at any position x can be normalized relative to the free

end of the beam by dividing by Wy(0). The value of Wy(0) is 2C; as can be readily seen

by substituting x = 0 into equation 20. The normalized beam displaccment is then given as
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yn(X)—.l_( .a-,l).(..i.coh.ui).{.lcln(' E+'ha’lx)
W0 =3\ T sh = 3 G, \Sin - *sinh 2
where
Cin sin o, + sinh o,
C,,  sin a, cosh &, — cos oy, sinh o, 29

Substitution the values of o, for o in equation 10, making the additional substitution

that the complex modulus E* = E' (1 + in) results in
_ pA I* @’
E (1+in)], 30
Since the modulus is complex, the frequencies are also complex. The substitution is

therefore made where @* = 0y’ + i @y" into equation 30 which results in

pAl® w?2-0?+2in, 0",

iy E (1+in) 31

Separating the real and imiaginary parts of equation 31 results in

. pAl* }
E=E" (02-w?)
I 32
. 2 0,07,
=2
Wnp— Wy 33

Solving now for the particular solution to the transverse displacement resulting from

an applied force, we have as the equation of motion
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1~:Ia-aj-“-f1 +pA9-2—‘;’- =F,8(x)e "
ox Jat 34

Following the same development as was performed for the complimentary solution to

the beam equation, the solution to equation 34 can be written in terms of a series as

— 4F, W, (x) ¢!
W) = Y, =2

n=1 n(0) (@2 - @) 35

Using the realtionship o* = wy' +1i @r", the value of (0*2 - ®2) is given as

O);z—(l)2=0);‘2—0);2+2i(0;1(0;-0)2 36

) -
- : g w o
‘ m,,z—m2=mn2—m,,z(l— — +2i— ,,2]
] @ — 0, o, -0,

37
2w, & o .
But > =N Substituting this into equation 37 yields
o, —mn2
» : " (l)2
(.On2--(1)2=(0n2—(0n2(l~—'2——7-2' +iT|J
W =~ Wy 38
Substitiing equation 28 into equation equation 35 yields
— 4F W_(x ci(;ot
W)= - 20 -2 Wn'O; 2
n=1 pAl(mn_mn) nt [1 ___(1) +i )
T3 ot
®n — O, 39

Using the relationship for E' that previously derived in equation 32, we have that
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4F, 4F, 1

pPAl(@ -w?) Eojl, 40

Substituting this into equation 39 yields

3 .
4F, P W, (x) el ot )
Wk = ), =
n=1 E a’: IE wn(O) [] mz H )

41

Expanding part of equation 41 we have that

2 2 4
® . W oy :
aﬁ(l—————,? > +m)=aﬁ— NG N +mozf,

Using equation 32 and rearranging terms we have that

4

o,  pAl

2 w2 '
W,—0, IaE 43

9 m2p Al
Letting wp = , and substituting into equation 42 yields
EIl,

2
aﬁ[l—-—,—z—(f)-—;z—ﬂn]:ai—wéﬂnaﬁ
(@ ~,") 44

Substituting equation 44 into equation 41 yields

< 4F P W (x) 0t
w , = Q n
=2, El, Wn® @f-w}-icdn)

n=1




For a complex number, the denominator can be rewritten in polar form as

1
: 4 . o5
op— eh +ion = (0~ 0 )7+ () iZeh 46
where
e ¢, = 1 5
Wp
==
Cn 47
Substtuting this relationship into equation 45 vields
S AF, P Wo(x) i(ot-¢,)
W(x.0) = z o n € :
EL Wa0 4 2.2 4 _ 2
n=1 a [ (o, ~wp)= (o, N)]2 48
or
wE I, 2 W, (x) RICELY)
37 W0 2

From equation 49 it is seen that the amplitude of vibration is proportional to

1
w e | (0~ @ )+ (g m)*] 72 50

A maximum of equation 49 occurs when wp“ = o or when

orp Al

2
0)D= . :an
E I, 51

or
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' 4
(1):2 =E Iao'n
" pat 52

where @, is the angular frequency at which the maximum amplitude occurs. The
maximum for the resonant amplitude, Wax, occurs at this frequency, Wm. At this
frequency, Wmax & (0a? )1, Letting ) and {3 be the two frequencies on either side of

fim at whichi

(a,M) 53

Solving equation 53 for 1} yields

N ’f%n—fﬁ\]
= 1|7, 2
©-12 ~ 2k

But (t?,,— f;zn )= (fn + ) (f - fi; ). In addition, using the approximation f, + f; = 2f; in

equation 54 yields

n= 1 2f (fy, — i) _ ] (f3, — i) . %
- 1 2 - 1 - .
c-nz  %fm €3 fm 55 i

Substituting C =2 in equation 55, which corresponds to a 3 dB amplitude drop
yields

(fn -fi) Afy

frn fen 56 Y

which is the well known half poveer band width formula.




Appendix C

Annotated Copy of Computer Program to Determine Damping Loss Factor.

10* ***>*+ THE FOLLOWING PROGRAM IS CALLED 10RTHOFIT **+**

20"

30 ' THIS PROGRAM PERFORMS A FIT TO DATA IN & DATAFILEFOR A

40 ' FOUPTH CRDER POLYNOMIAL FIT WITH ORTHCGONAL COEFFICIENTS

50 " THE INFORMATION IS READ FROM A FILE AND YCU ARE PROMPTED FOR

60 ' THE APPROPKRIATE INFORMATION, DATA REDUCTION DONE IN dB

v’

80Y=1)

90 PRINT " IN ORDER TC RUN THIS PROGRAM, YOU NEED TO HAVE A DATAFILE "

100 FRINT " THAT HAS THE FOURTH ORDER PGLYNOMIAL COEFrICIENTS ALONG WITH"
110 PRINT * THE ALPHA AND BETA VALUES. THEY SHOULD 8F INPUT FOR EACRH"

120 PRINT " EQUATION IN THE FOP.M: "

130 PRINT " A,B,C, D, E"

146 PRINT " Al, AZ, A3, 24, A5~

156 PRINT " Bi, B2, B3, B4, BS”

160 PRINT

170 PRINT " WHERE THE FJRM OF THE EQUATION IS EX? 4+DXA3+CXA2+BX+A "

180 PRINT " AND Al - A5 AND Bi - BS “.RE THE ALFHA AND BETA COEFFICIENTS"

190 PRINT " AS DETERMINED USING GRAPHER POLYNOMIAL FiT"

20 PRINT

210 PRINT " INPUT THE NAME OF THE FILE THAT HAS THE COEFFICIEMTS FOR THE "
220 PRINT " FOURTH ORDZR POQLYNOMIAL FIT WITH DRTHOGONAL COEFFICIENTS "
230 PRINT " IN THE FORMAT AS INDICATED ABOVE *;

240 INPUT "" A%

250 OPEN AS FOR INPJT AS #1

260 INPUT #1,A# B# C# D# E#

270 INPUT #1. AV1#, A28 A3 Adst ASH

280 INPUT #1,B14#,B%%,83#,B4# BS#

290 INPUT #1,F#,G# H# 18 )&

300 INPUT #1,A11#,A128,A 174 A48, 4158

31I0INPUT #1,B11#.B124,B134.B14# B 15#

320 PxINT

330 CLS

340 PRINT " THE COEFFICIENTS FOR THE FIRST EQUATION FOR THE POLYNOMIAL rFIT”
350 PRINT "IN TriE FORM EXA44+DXA2+UX*2+BX+A ARE "

360 PRINT E#;"XA\4 + ";D#;" XA3 + ";CH:"X2 + ";B#;"X + "A#

370 PRINT

380 PRINT " THE VALUES FOR THE ALPHAS IN THE ORTHOGONAL FIT FOR THE FIRSY"
390 PRINT " EQUATION ARE ";A1#;AZ#, A4 Adtt, ASH

400 PRINT
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410 PRINT " THE VALUES FOR THE BETAS IN THE ORTHOGONAL FIT FOR THE FIRST "
420 PRINT " EQUATION ARE ";B1#;B2#;B3#;B4#;B5#

430 PRINT

440 PRINT " THE COEFFICIENTS FOR THE SECOND EQUATION FOR THE POLYNOMIAL FIT"
450 PRINT " IN THE FORM EXM+DX"3+CXA2+BX+A ARE "

460 PRINT J#;" X4 + ";1#;"XA3 + "H#;"X*2 + ":G#;"X + " F#

470 PRINT

480 PRINT " THE VALUES FOR THE ALPHAS IN THE CRTHOGONAL FIT FOR THE SECOND"
490 PRINT " EQUATION ARE ";A11#;,A12#;A134;A14#;A154

500 PRINT

510 PRINT " THE VALUES FOR THE BETAS IN THE ORTHOGONAL FIT FOR THE SECOND”
520 PRINT " EQUATION ARE ";B11#;B12#;B13#;B14#,B154

530 PRINT

540 PRINT " INPUT THE LOWER AND UPPER BOUND FOR THE FREQUENCY FOR WHICH"
550 PRINT " PROGRAM WILL SEARCH FOR A SOIL.UTION ™,

560 INPUT ™", XL#,XR#

570 XM#=(XL#+XR#)2

580 FL#=XL#

590 FR#=XR#

600 CLOSE #1

610 XLA4=E#

620 XL34=D#-E#*ASH-AH*ES-AIH*E4-A24*EH

630 XIL2H=E#*AS#* Ad#-DH* AdR+-CH-BM*ER-A*DH+ AN ASHCEd+ AR* AN CH

640 XL2#=XL2#-E#* B3#-A28*DE+ A28 ASH*ES+ A20* AGH*EH+ A28 * AH*EH

650 XL24=X124-BR2#*E#

650 XLIM=AM* AA# DS AN AU ASHYER . AMSCH+ ASHYBAH*EL-BI#~ D+ AS#*BINCEX

670 XL1#=XL1#+BR+ A28 A48 DH-A28* A2#* ASK EX-A28"CR+ A24* BAN*E#+A28* A3#° Di#t

680 XL 1A=XL i#-A28% AW ASH ER-A2H* AT4* A4¥* ES+ A2#*B3#*ER-B2#* D¢t

690 XL1#=XLi#+ASH*B2¥*EN+ AdH*B2H*ER

700 XLO#= A28 AN AINC ASESEN- A0 AN AGH*DE+A2H* A34*Ch

T10 XLO#=XLO#-A2#* A3#* BANE#+A20B3H* Di-A2H* ASH*BI#*E#-A2#* B#t

720 XLO#=XLON+AN+ASH*B2#*DR-AGH#H*AS#*B2#*E#+ B2 *BANCE#-BZN*C#

730 XR4#=)#

TaU XRH<IH-JHOAISH-A14#* IN-A 1302 JH- A1 28 8

750 XR2#=J#*A154* Ald#-14* A 148+ HE-B 14#* J8-A 1348 14+ A1 38 A15H J#+ A1 I8+ A 140 J#

760 XR2E8=XR2#-J4*BI13#-A124* |G+ A120° A158* JH+ A120* A 140" IR+ A128% A1 38 13

770 XR28=XR24-B124#%)#%

T80 XR1#=A13¥*A144%[#-A130* AV4R* A1S5H*JH- AT *HR+A134#*B14#* J4-B11ss ¥

T90 YRI#=XRI#+A128%A144*[B-A128° A1aH* A 15#*J8-A1248*HE+ A128B . AIZ28 Al34~1#
800 XRI#=XR1#-A12#* A1 ALSH*JH-A124*A138* A14#*J8+A12¢*B | 34* 'y

810 XR1#=XR1#+A 154" B124%J#+ A14#*B12#*J#+A158B 138 J#+G#

820 XROH=A128* A134* A14HCA1SHCJH-A 128 A 130 A 144 1H+ A 128 A 15  HE

830 XRO#=XRO#-A124% A 136#*B14#*JH+ A120* B 34" I4-A124° A154*B1384* JH-A124*G#

840 XRO#=XROB+FE+AT4H*B128*IH-A 144 A15#*B12#*J8+B124*B1a#*]#-B12#*H¥

850 PRINT

860 CLS

8621FY = 1 GOTO 870

864 PRINT IS THE MATERIAL TYPE ";MS$;

866 INPUT "" Q%

857TIF QS ="Y" OR Q8 = "y" GOTO 890

870 PRINT "ENTER THE TYPE OF MATERIAL FROM WHICH THIS DATA WAS TAKEN ":




880 INPUT ""MS$

890 PRINT

892 IF Y = 1 GOTO 900

894 PRINT "IS THE BEAM LENGTH STILL ";L3;

896 INPUT "".QS$

898 IF Q$ = "Y" OR QS = "y" GOTO 920

900 PRINT " ENTEK THE BEAM LENGTH FOR THIS SAMPLE ";

910 INPUT "".L$S

920 PRINT "INPUT THE VALUE OF X-MID AND XSCAL FOR THE FIRST "
930 PRINT " EQUATION ";

940 INPUT "",XMD14,XSC1#

950 PRINT

960 PRINT "INPUT THE VALUE OF X-MID AND XSCAL FOR THE SECOND "
970 PRINT " EQUATION *;

980 INPUT ", XMD2#,XSC2#

990 CLS

1000 "X XLL#=(XL¥-XMD 1#)*XSC1#

1010 X XRL#=(XL#-XMD2#)* XSC2#

1020 XXLM#=(XM#-XMDI#)*XSCI#

1030 XXRM#=(XM#-XMD2#)* XSC2#

1040 XXLR¥#=(XR#-XMD1#)*XSC14#

1050 "X XRR#=(XR#-XMD2#)* XSC2#

1060 VAML#= XLA#*XXLM#AS + XL3# X XLMWNAS + XL2#* XXLM#A2 + XL1#*XXLM# +XLO#
1070 VAMR#¥= XRA#*XXRM#N + XR3¥*XXRM#*3 + XR2#* X XRM#*2 + XR1#*XXRM¥ +XRO#
1080 IF VAMR¥-VAMLA#<0 GOTO 1170

1090 ' S#=XRa¥-XLA¥

1100 ' TH=XR3¥-XL3¥

1110 " US=XR2#-XL2#

1120 ' VA=XRI#-XL 14

1130 WH=XROW-XLO%

1140 XULit= XMi#

1150 XM#=(XL#+XR#)2

1160 GOTO 1190

1170 XR¥= XM#

1180 XM#=(XL#+XRH¥)2

1190 IF (XR#-XL¥)<1E-13 GOTO 1220

200 IF ABS(VAMLY-VAMR#)<1E-14 GOTO 1220

1210 GOTO 1000

i220 PRINT "THE SOLUTION TO THE FREQUENCY THAT CORRESPONDS TO THE
INTERSECTION"

1230 PRINT "OF THE TWO QUARTIC EQUATIONS IS ";XM#

1240 PRINT

1250 V1#=XRA#*X XRMHEAG+XRIN* X XRM#A3 - XR2H* X XRMHA2+ XR 142 X XRMtt+ XROW
1260 V28=XLAN* X XLM#AG + XL3#* X XLM#A3+XL2#* X XLM#A2+ XL 1#* X XLM#+ X LO#H
1270 PRINT "THE VALUE OF THE AMPLITUDE FROM EQUATION 1 & 2
1280 PRINT "RESPECTIVELY ARE ";V2#,V1#

1290 PRINT

1300 FEl#= V2# .3

1310 FE26= Vi#-3

1320 LN2#= FE2#

1330 LN#= FE1#
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1340 XLO1#=XLO#-LN#

1350 XRO1#=XRO#-LN2#

1360 XR#=XM#

1370 XL#=FL#

1380 XM1#=(XR¥+XL#)/2

1390 XXLL#=(XL#-XMD1#)*XSC1#

1400 X XL M#=(XM1#-XMD1#)*XSC1#

1410 XXRM#=({XR#-XMD1#)*XSC14

1420 VALM#=XL4#* XXLM#A4 + XL3#* X XLM#A3 + XL2#*XXLM#A2 + XL1#*XXLM# + XLO1#
1430 IF ABS(VALM#)<1E-14 GOTO 1530 :
1440 IF (XR#-XL#)<1E-13 GOTO 1530

1450 IF ABS(VALM#)=VALM# GOTO 1490

1460 XLA=XM1#

1470 XMI#=(XL#+XR#)/2

1480 GOTO 1390

1490 XR¥=XM1#

1500 XM 1#=(XR#+XL#)/2

1510 GOTO 1390

1530 PRINT "THE FREQUENCY CORRESPONDING TO -3dB OF THE PEAK AMPLITUDE "
1535 VALM#=XLA#*XXLM#A4 + XLIH*XXLMHA3 + XL2#*XXLM#A2 + XL1#*XXLM# + XLO#
1540 PRINT "OF THE LEFT SIDE OF THE PEAK IS ";XM1#;VALM#

1550 PRINT

1560 XLA=XM#

1570 XR#=FR#

1580 XM2#=(XM#+XR#)72

1590 XXRM#=(XM2#-XMD2#)* XSC2#

1600 VARM#=XR44*XXRM#AS + XRI¥*XXRMHAS + XR2¥*XXRM#A2 + XR1#*XXRM# + XRO1#
1610 IF ABS(V ARM#)<1E-14 GOTO 1710

1620 IF (XR#-XL#)<1E-13 GOTO 1710

1630 IF ABS(VARM#)=VARM# GOTO 1670

1640 XR#=XM2#

1650 XM2#=(XL#+XR#)/2

1660 GOTO 1590

1670 XL#=XM2#

1680 XM2#=(XL#+XR#)12

1690 GOTO 15%0

1710 PRINT "THE FREQUENCY CORRESPONDING TO -3dB OF THE PEAK AMPLITUDE "
1715 VARM#=XR4#*XXRM#A4 + XR3#*XXRM#A3 + XR2¥*XXRM#A2 + XR1#*XXRM# + XRO#
1720 PRINT "OF THE RIGHT SIDZ OF THE PEAK IS ";XM2#; VARM#

1730 PRINT

1740 LF# = (XM2#-XMI¥)/XM#

1750 PRINT " THE LOSS FACTOR FOR THIS DATA IS ";LF#

1760 OPEN AS FOR OUTPUT AS #2

1770 PRINT #2,A#,B#,C# D# E#

1780 LPRINT A#B#.CH.D# E#

1790 PRINT #2.A14,A24 A3, A4H, ASH

1800 LPRINT Al#,A2¢ A3# A48t ASH

1810 PRINT #2.B1#,B2#,B3#,Ba# BS¢

1820 LPRINT B1#,B2#,834,B4# BS#

1830 PRINT #2,F#,G#.H# 1# J# .
1840 LPRINT F#,G#,H# 1# J#
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1850 PRINT #2,A11#,A12#,A13#,A14#,A154
1860 LPRINT Ali#,A124. A13# A144 A15#
1870 PRINT #2,B11#,B12#,B13#,B14# B15#
1880 LPRINT B11#,B12#,B13#,B14# B15#
1850 PRINT #2,""
1900 LPRINT "
1910 PRINT #2,"THE LOSS FACTOR FOR THIS DATA IS ";LF#
1920 LPRINT "THE LOSS FACTOR FOR THIS DATA IS ";LF#
1930 PRINT #2,"THE VALUE OF THE PEAK HEIGHT IS ";V1#
‘ 1940 LPRINT "(HE VALUE OF THE PEAK HEIGHT IS ";V 14
1950 PRINT #2,"AT A FREQUENCY OF ";XM#
1960 LPRINT "AT A FREQUENCY OF ";XM#
1970 PRINT #2,"FREQUENCIES AT -3dB OF PEAK HEIGHT ARE ";XM1#;XM2#
1980 LPRINT "FREQUENCIES AT -3dB OF PEAK HEIGHT ARE "; XM 1#;XM2#
1990 PRINT #2,"THE FILE NAME FOR THIS DATA IS ";A$
2060 LPRINT "THE FILE NAME FOR THIS DATA IS ";AS
2010 LPRINT
2020 PRINT #2,"THE MATERIAL TESTED WAS ";M$
2030 LPRINT "THE MATERIAL TESTED WAS ";M$
2040 PRINT #2, " THE BEAM LENGTH WAS ".L$
2050 LPRINT " THE BEAM LENGTH WAS ";L$
2060 PRINT #2, "THE DATE IS ";DATES$
2070 LPRINT "THE DATE IS ";DATES
2080 LPRINT CHRS$(i2);
2090 CLOSE #2
2005 Y = Y+1
2100 INPUT "WOULD YOU LIKE TO DO ANOTHER CURVE FIT ";AS
2110 IF AS="Y" OR A$="y" THEN GOTO 2130
2120 GOTO 2159
2130 CLS
2140 GOTO 90
2150 END



Appendix D

Processing Procedures used for Fabrication of Composite Materials
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FIGURE 44  Vacuum bag layup used for processing composite materials
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FOR AS4 /3501

and S2-Glass/3501-6
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FIGURE 45 Autoclave cure cycle used for composite materials




APPENDIX E

Loss Factor vs. Frequency for Glass/epoxy and Graphite/epoxy

Table 19: Flexural Damping Loss Factor Results for 90° Unidirectional AS4/3501-6

Beam Length
(in)

First Resonant

(hz)

Loss Factors
(x 104

Ave. Loss Facior
(x 104

Standard Deyv.
(x 104

8.00

25.05

54.61
47.92
57.01
56.39

53.98

3.06

7.00

33.27

58.94
57.29
58.58
71.95
57.12

60.778

5.63

6.00

43.89

54.26
63.51
61.03
50.20
63.15

4.00

93.45

58.43

5.29

70.6279
68.0501
76.4936
77.4548
65.3781

71.60

4.70

3.00

163.12

63.0139
63.558
59.9878
74.7062
65.8927

65.43

5.00

2.50

221.12

81.4684
61.926
69.3177
73.3073
75.7239

72.35

6.53

1.50

685.49

59.3865
51.9849
65.7985
52.0188

57.30

5.76
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Table 20: Flexural Damping Loss Factor Results for 0° Unidirectional AS4/3501-6

Beam Length
{in)

First Resonant
(hz)

Loss Factors
(x 104)

Ave. Loss Factor
(x 104)

‘Standard Dev.
(x 104

10.34

48.51

40.8
27.31

34.06

6.75

9.38

60.66

47.05
33.76
21.22

34.01

10.55

100.23

40.43
32.4
48.04

40.29

3.87

5.00

209.93

50.97
47.66
49.89

49.51

1.38

4.50

253.37

31.04
27.25
31.89
29.66

29.96

1.76

4.00

326.61

3491
27.31
41.18

34.67

5.42

3.50

427.59

62.18
62.3
66.57
70.1
60.66
65.54
70.79

65.45

3.68

3.25

486.56

59.58
64.73
51.42
59.16
61.09

59.20

4.36

3.00

567.15

46.46
50.32
41.35
47.61
50.24

47.2

3.28

2.75

671.08

33.32
33.89
41.33
48.59
43.96
32.83

39.82

5.52
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Table 21: Flexural Damping Loss Factor Results for +45° Cross Ply A$4/3501-6

j Beam Length
(in)

Fust Resonant
(hz)

Loss Factors

(x 104

Ave. Loss Factor
(x 104

Standard Deyv.
(x 104

8.00

28.10

74.01
79.25
61.31
71.29
71.28

71.43

5.84

6.50

43.07

108.8
115.53
113.9
113.85
113.87

113.189

2.29

6.00

50.81

85.65
100.33
95.76
88.61
95.15

93.10

5.28

5.00

73.74

61.36
66.84
68.51
67.G6
56.31

64.02

4.56

4.00

117.44

51.51
61.20
57.63
50.90
51.21

54.49

4.18

3.00

214.42

51.76
40.67
47.37
64.95
56.15

52.18

8.18

2.50

317.1

57.06
47.51
60.57
51.42
64.93
62.89

57.40

6.20

2.125

441.12

54.52
70.08
54.66
48.09
60.03
65.95
71.95

60.75

8.25
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Table 22: Flexural Damping Loss Factor Results for 90° Unidirectional -2 Glass/3501-6

Beam Length | First Resonant | Loss Factors | Ave. Loss Factor| Standard Dev.
(in) (h2) (x 104) (x 104) (x 104)
72.48
83.41
11.00 14.77 68.24 78.44 6.81
82.47
85.60
54.26
60.42
10.00 17.95 49.28 57.84 5.62
59.47
65.76
52.90
9.00 22.34 54.46 53.71 2.84
49.81
57.69
73.24
75.29 E
8.00 28.38 69.25 77.76 6.62 .
85.23 -
85.81
62.73
74.44
7.00 37.10 78.63 70.20 6.15
63.70
71.52
54.22
62.74
6.00 50.26 66.22 60.76 3.95
61.05
59.57
82.58
82.06
5.00 71.36 89.66 R7.42 6.26
84.10
98.73
76.76
69.17
4.00 104.32 76.58 71.00 6.03
72.09
60.37
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Table 22: Flexural Damping Loss Factor Results for 90° Unidirectional S-2 Glass/3501-6 /
(cont) &

Beam Length | First Resonant | Loss Factors [ Ave. Loss Factor| Standard Dev.
(in) (hz) (x 104) (x 104) (x 104)
96.16
78.11
3.00 192.23 80.55 87.74 8.42
84.75
99.15
64.48
78.71
2.50 280.22 80.28 80.81 9.34
91.16
38.42
119.47
2.00 423.35 108.93 99.52 17.56
72.29
97.37
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Table 23: Flexural Damping Loss Factor Results for 0° Unidirectional S-2 Glass/3501-6

Beam Length | First Resonant | Loss Factors | Ave. Loss Factor| Standard Dev.
(in) (hz) (x 109 (x 104%) (x 104
53.98
61.01
8.5G 41.07 55.52 58.41 3.30
62.86
58.67
52.66
58.20
8.00 46.30 62.96 58.38 3.59
56.84
61.25
45.70
75.80
6.50 70.40 56.50 65.75 11.87
75.98
69.79
58.58
53.14
6.00 81.70 59.74 55.47 4.78
58.78
47.11
61.74
97.30 62 .96
5.50 61.23 63.05 3.65
59.37
69.98
66.85
60.94
4.00 180.80 73.47 66.35 5.59
71.33
59.18
70.65
74.19
3.25 269.90 72.42 71.18 1.99
70.34
68.30
60.95
65.57
2.75 381.5C 50.81 59.15 5.78
54.05
64.35

66.89
71.28 i
2.50 451.50 69.40 68.92 1.56
69.49
67.54




Table 23: Flexural Damping Loss Factor Results for 0° Unidirectional S-2 Glass/3501-6

{cont)

Beam Length
(in)

First Resonant
(hz)

Loss Factors
(x 104)

Ave, Loss Factor
(x 104

Standard Dev.
(x 104

2.25

555.60

44.55
51.11
33.64
48.11
36.67

42.82

6.66

44.60
26.85
42.78
42.65
24.51

43.34

82.72
56.12
94.74
91.27
89.77
85.11
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Table 24: Flexural Damping Loss Factor Results for +45° Cross Ply S-2 Glass/3501-6

Beam Length
(i)

First Resonant
(hz)

Loss Factors
(x 104

Ave. Loss Factor
(x 104

Standard Dev.
(x 104

10.1¢

55.37

42.94
41.44
62.35
60.34
49.78

8.00

86.33

51.37

8.64

77.07
68.99
€2.65
70.29
77.50

71.30

5.53

6.50

133.66

75.13
76.41
80.39
66.84
79.66

75.69

4.84

5.00

221.02

68.68
61.74
59.73
55.29
86.33
84.66

69.41

12.05

4.00

341.03

94.61
91.68
94.86
113.71
87.16
99.93

96.99

8.40

3.50

446.27

102.69
105.79
96.89
99.19
96.34

100.18

3.59

3.125

565.78

88.76
102.08
98.48
81.69
94.32

93.07

7.21
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Table 24: Flexural Damping Loss Factor Results for +45° Cross Ply S-2 Glass/3501-6
{cont)

Beam Length | First Resonant | Loss Factors | Ave. Loss Factor| Standard Dev.
. (in) (hz) (x 104) (x 104 (x 104

106.46
123.64
2.875 635.28 104.93 106.08 11.02
99.70
113.58
88.15
123.86
04.43
2.625 746.27 103.06 108.93 14.63
133.45
95.35
103.44
157.41
159.06
2.5 820.36 113.57 126.83 23.34
100.77
106.04
124.15




Appendix F
Statistical Analysis of the Damping Loss Factor for Glass/epoxy and Graphite/epoxy

TABLE 26 Statisticai values for use in Equation 160 for 90° S-2 Glass/3501-6

S-2 GLASS/3501-6 90°
FREQUENCY T-VALUES AVERAGE | STD DEV NO. OF
(hz) (Confidence Level) | Loss Factor SAMPLES

14.77 5.217 78.44 6.81 5
. (99%)

17.95 1.325 57.84 5.62 5

(90%) _

- 22.34 4.074 53.71 2.84 4
(99%)

28.38 0.923 77.76 6.62 5
(95%)

37.10 2.890 70.20 6.15 5
(99%)

50.26 8.050 60.76 3.95 5
(99%)

71.36 4227 87.42 6.26 5
(99%)

104.32 3.615 71.00 6.03 5
(99%)

192.23 1.223 87.74 8.42 S
(85%)

280.22 2.068 80.81 9.34 5
(96%)

423.35 99.52 17.56 4
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TABLE 27 Statistical values for use in Equation 160 for 0° S-2 Glass/3501-6

S-2 GLASS/3501-6 0°
FREQUENCY T-VALUES | AVERAGE | STD DEV NO. OF
(hz) (Confidence L=vel) | Loss Factor SAMPLES
41.1 0.0126 58.41 3.30 5
(<50%)
46.3 1.149 58.38 3.59 5
(85%)
70.4 1.622 64.73 11.87 5
(92%)
81.7 2.820 55.47 4.78 5
(98%)
91.3 1.105 63.05 3.65 5
(85%)
130.8 1.819 66.35 5.59 5
(94%) _
269.9 4.400 71.18 1.99 5
(92.5%)
381.5 3.648 59.15 5.78 >
99.5%)
451.5 3.532 68.92 1.56 5
(99.5%)
555.6 42.82 6.66 5
696.6 43.34 0.89 3
898.7 83.29 6
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TABLE 28 Statistical values for use in Equation 160 for +45° S-2 Glass/3501-6

S-2 GLASS/3501-6 +45°

[ FREQUENCY T-VALUES AVERAGE | STDDEV NO. OF
(hz) (Confidence Level) | Loss Factor SAMPLES

55.37 4.340 51.37 8.64 5
(99.5%)

86.33 1.336 71.30 5.53 5
(89%)

133.66 1.087 75.69 4.84 S
(85%)

221.02 4,599 69 .41 12.05 6
(99.5%)

341.03 - 0.786 90.99 8.40 6
(77%)

446.27 1.974 100.18 3.59 5
(95%)

565.78 ~ 2.257 93.07 7.21 5
%)

635.28 0.381 106.08 11.02 6
(63%)

746.27 1.413 108.93 14.63 6
(90%)

820.36 126.83 2334 6
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TABLE 29 Statistical values for use in Equation 160 for 90° AS4/3501-6

AS4/3501-6 90°
. FREQUENCY T-VALUES AVERAGE | STDDEV NO. OF
(hz) (Confidence Level) | Loss Factor (x 104) SAMPLES
(x 10-4)
. 25.05 2.080 53.98 3.608 4
(96%) _
33.27 678 60.776 5.632 5
(72.5%)
43.89 4.161 58.432 5.290 5
(99.5%)
93.45 2.009 71.601 4.701 S5
(96%)
163.12 1.880 65.432 5.004 S
(95%)
221.12 3.612 72.349 6.532 S
(99.5%)
685.49 57.297 5.760 4
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TABILE 30 Statistical values for use in Equation 160 for 0° AS4/3501-6

AS4/3501-6 0°
FRE( JENCY T-VALUES AVERAGE | STDDEV NO. OF
(hz) (Confidence Level) | Loss Factor (x 104) SAMPLES
(x 104
48751 0.005795 34.06 6.745 2
60.66 882 34.01 10.547 3
(77%)
100.23 2.444 40.29 3.686 3
(95%)
209.93 15.85 49.51 1.378 3
(99.5%)
253.37 1.669 29.96 1.755 4
91%)
326.61 10.661 34.66 5.420 3
(99.5%)
427.59 2.692 65.45 3.683 7
(97%)
486.56 4010 590.20 4 358 5
(99.2%) _
567.15 2.615 47.20 3.284 5
(96.2%)
671.08 39.82 5.518 6
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TABLE 31 Statistical values for use in Equation 160 for +45° AS4/3501-6

AS4/3501-6 +45°
FREQUENCY T-VALUES AVERAGE | SIDDEV NO. OF
(hz2) (Confidence Level) | Loss Facior SAMPLES
28.10 14.906 71.43 5835 3
. (99.5%)
43.07 7811 T13.19 2287 3
(99.5%)
50.81 9.325 0310 5.277 5
i (99.5%)
73.74 3.445 64.02 4.558 5
_ (99.5%)
117.44 362 35440 4.181 5
(70%)
214.42 1.206 52.18 8131 35
(86%) )
317.1 815 57.4 6.1990 3
(78%)
431.12 66.75 §.248 7




Appendix G
Loss Factor for 5208 Epoxy

TABLE 32 Loss Factor as a Function of Frequency for 5208 Neat Epoxy Resin

Frequency Loss Factor Average Loss Factor Standard Dev.
(hz) (x 104) (x 10 (x 104)

180.57
199.78
50 144.72 194.52 29.72
225.28
222.24

181.36
210.43
102.3 190.75 197.97 9.85
197.51
207.68
200.11

227.85 193.41 207.24 20.70

432.15 221.G6 238.76 27.46

696.75 309.39 272.06 27.18
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